Kamatani N, Carson D A
Biochim Biophys Acta. 1981 Jul 17;675(3-4):344-50. doi: 10.1016/0304-4165(81)90024-6.
The exact source of de novo adenine produced by mammalian cells remain poorly understood, and this prompted the present study. Using a human lymphoblastoid cell line (WI-L2) deficient in adenine phosphoribosyltransferase (EC 2.4.2.7), we have quantitated the rate of adenine synthesis and the relative importance of the phosphorolysis of 5'-methylthioadenosine versus adenosine or 2'-deoxyadenosine in adenine generation. Dividing adenine phosphoribosyltransferase-deficient WI-L2 cells produced adenine at a rate of 0.27 nmol/mg protein/h. This represented approximately 10% of the rate of hypoxanthine production by WI-L2 cells deficient in hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) but was equivalent to the rate of 5'-methylthioadenosine synthesis by human lymphoblastoid CCRF-CEM deficient in 5'-methylthioadenosine, phosphorylase (5'-methylthioadenosine: orthophosphate methylthioribosyltransferase). Up to 97% of adenine, but not hypoxanthine, synthesis was inhibited dose-dependently by the S-adenosylmethionine decarboxylase-inhibitor methylglyoxal bis(guanylhydrazone) and also by spermidine and spermine, but was enhanced by putrescine. The addition of 2-fluoroadenine, a potent competitive inhibitor of methylthioadenosine phosphorylase (Ki = 0.43 microM) to adenine phosphoribosyl-transferase-deficient cells resulted in a progressive accumulation of 5'-methylthioadenosine in the culture medium, and up to an 85% decrease in adenine production at non-toxic concentrations. These results show that de novo adenine synthesis by dividing human cells is considerable, and that 85-97% derives from the cleavage of 5'-methylthioadenosine and hence from polyamine synthesis.
哺乳动物细胞产生的新生腺嘌呤的确切来源仍知之甚少,这促使了本研究的开展。我们使用了一种缺乏腺嘌呤磷酸核糖转移酶(EC 2.4.2.7)的人淋巴母细胞系(WI-L2),对腺嘌呤的合成速率以及5'-甲硫腺苷相对于腺苷或2'-脱氧腺苷的磷酸解在腺嘌呤生成中的相对重要性进行了定量分析。处于分裂状态的缺乏腺嘌呤磷酸核糖转移酶的WI-L2细胞产生腺嘌呤的速率为0.27 nmol/mg蛋白质/小时。这大约是缺乏次黄嘌呤磷酸核糖转移酶(EC 2.4.2.8)的WI-L2细胞产生次黄嘌呤速率的10%,但与缺乏5'-甲硫腺苷磷酸化酶(5'-甲硫腺苷:正磷酸甲基硫代核糖基转移酶)的人淋巴母细胞CCRF-CEM合成5'-甲硫腺苷的速率相当。高达97%的腺嘌呤(而非次黄嘌呤)合成受到S-腺苷甲硫氨酸脱羧酶抑制剂甲基乙二醛双(脒腙)以及亚精胺和精胺的剂量依赖性抑制,但腐胺可增强腺嘌呤的合成。向缺乏腺嘌呤磷酸核糖转移酶的细胞中添加2-氟腺嘌呤(一种甲硫腺苷磷酸化酶的强效竞争性抑制剂,Ki = 0.43 microM),导致培养基中5'-甲硫腺苷逐渐积累,在无毒浓度下腺嘌呤产量最多可降低85%。这些结果表明,分裂的人细胞中新生腺嘌呤的合成量可观,且85 - 97%源自5'-甲硫腺苷的裂解,因此来自多胺合成。