Suppr超能文献

减数分裂驱动系统的实验群体遗传学。III. 通过性染色体非整倍体对果蝇性别比例畸变的中和作用。

Experimental population genetics of meiotic drive systems. III. Neutralization of sex-ratio distortion in Drosophila through sex-chromosome aneuploidy.

作者信息

Lyttle T W

出版信息

Genetics. 1981 Jun;98(2):317-34. doi: 10.1093/genetics/98.2.317.

Abstract

Laboratory populations of Drosophila melanogaster were challenged by pseudo-Y drive, which mimics true Y-chromosome meiotic drive through the incorporation of Segregation Distorter (SD) in a T(Y;2) complex. This causes extreme sex-ratio distortion and can ultimately lead to population extinction. Populations normally respond by the gradual accumulation of drive suppressors, and this reduction in strength of distortion allows the sex ratio to move rapidly able to neutralize the effects of sex-ration distortion by the accumulation of sex-chromosome aneuploids (XXy, XYY). THis apparently occurs because XX-bearing eggs, produced in relatively high numbers ( approximately 4%) by XXY genotypes, become the main population source of females under strong Y-chromosome drive. Computer simulation for a discrete generation model incorporating random mating with differences in fitness and segregation permits several predictions that can be compared to the data. First, sex-chromosome aneuploids should rapidly attain equilibrium, while stabilizing the population at approximately 60% males. This sex ratio should be roughly independent of the strength of the meiotic drive. Moreover, conditions favoring the accumulation of drive suppressors (e.g., weak distortion, slow population extinction) are insufficient for maintaining aneuploidy, while conditions favoring aneuploidy (e.g., strong distortion, low production of females) lead to population extinction before drive suppressors can accumulate. Thus, the different mechanisms for neutralizing sex-ratio distortion are complementary. In addition, Y drive and sex-chromosome aneuploidy are potentially co-adaptive, since under some conditions neither will survive alone. Finally, these results suggest the possibility that genetic variants promoting sex-chromosome nondisjunction may have a selective advantage in natural populations faced with sex-ratio distortion.

摘要

黑腹果蝇的实验室种群受到假Y驱动的挑战,这种驱动通过在T(Y;2)复合体中整合分离畸变因子(SD)来模拟真正的Y染色体减数分裂驱动。这会导致极端的性别比例畸变,并最终可能导致种群灭绝。种群通常会通过驱动抑制因子的逐渐积累来做出反应,这种畸变强度的降低使得性别比例能够迅速变化,通过性染色体非整倍体(XXy、XYY)的积累来抵消性别比例畸变的影响。这显然是因为XXY基因型产生的携带XX的卵子数量相对较多(约4%),在强大的Y染色体驱动下成为雌性的主要种群来源。对包含随机交配、适合度差异和分离的离散世代模型进行计算机模拟,可以得出几个可与数据进行比较的预测。首先,性染色体非整倍体应迅速达到平衡,同时使种群稳定在约60%的雄性水平。这个性别比例应该大致与减数分裂驱动的强度无关。此外,有利于驱动抑制因子积累的条件(如弱畸变、种群灭绝缓慢)不足以维持非整倍体,而有利于非整倍体的条件(如强畸变、雌性产量低)会导致种群在驱动抑制因子积累之前灭绝。因此,抵消性别比例畸变的不同机制是互补的。此外,Y驱动和性染色体非整倍体可能是共同适应的,因为在某些情况下,两者单独都无法存活。最后,这些结果表明,在面临性别比例畸变的自然种群中,促进性染色体不分离的遗传变异可能具有选择优势。

相似文献

10
Analysis of a Strong Suppressor of Segregation Distorter in .玉米中一个分离抑制子强抑制因子的分析
Genetics. 2020 Aug;215(4):1085-1105. doi: 10.1534/genetics.120.303150. Epub 2020 Jun 19.

引用本文的文献

2
Evading resistance to gene drives.逃避基因驱动的抗性。
Genetics. 2021 Feb 9;217(2). doi: 10.1093/genetics/iyaa040.
4
The gene drive bubble: New realities.基因驱动泡沫:新的现实情况。
PLoS Genet. 2017 Jul 20;13(7):e1006850. doi: 10.1371/journal.pgen.1006850. eCollection 2017 Jul.
10
Sex allocation in animals.动物的性别分配
Experientia. 1985 Oct 15;41(10):1265-76. doi: 10.1007/BF01952069.

本文引用的文献

2
Mechanisms of meiotic drive.减数分裂驱动机制。
Annu Rev Genet. 1970;4:409-36. doi: 10.1146/annurev.ge.04.120170.002205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验