Suppr超能文献

恶臭假单胞菌的δ1-哌啶-2-羧酸还原酶

delta1-piperideine-2-carboxylate reductase of Pseudomonas putida.

作者信息

Payton C W, Chang Y F

出版信息

J Bacteriol. 1982 Mar;149(3):864-71. doi: 10.1128/jb.149.3.864-871.1982.

Abstract

Pseudomonas putida metabolizes D-lysine to delta 1-piperideine-2-carboxylate and L-pipecolate. The second step of this catabolic pathway is catalyzed by delta 1-piperideine-2-carboxylate reductase. This enzyme was isolated and purified from cells grown on DL-lysine as substrate. The enzyme was very unstable, resulting in low recovery of activity and low purity after a six-step purification procedure. The enzyme had a pH optimum of 8.0 to 8.3. The Km values for delta 1-piperideine-2-carboxylate and NADPH were 0.23 and 0.13 mM, respectively. NADPH at concentrations above 0.15 mM was inhibitory to the enzyme. Delta 1-pyrroline-5-carboxylate, pyroglutamate, and NADH were poor substrates or coenzyme for delta 1-piperideine-2-carboxylate reductase. The enzyme reaction from delta 1-piperideine-2-carboxylate to L-pipecolate was irreversible. EDTA, sodium pyrophosphate, and dithiothreitol at concentrations of 1 mM protected the enzyme during storage. The enzyme was inhibited almost totally by Zn2+, Mn2+, Hg2+ Co2+, and p-chloromercuribenzoate at concentrations of 0.1 mM. The enzyme had a molecular weight of about 200,000. Both D-lysine and L-lysine were good inducers for the enzyme. Neither delta1-piperideine-2-carboxylate nor L-pipecolate was an effective inducer for the enzyme. P. putida cells grew on D-lysine only after a 5- to 8-h lag, which could be abolished by adding a supplement of 0.01% alpha-ketoglutarate or other readily metabolizable compounds. Such a supplement also converted the noncoordinate induction of this enzyme and pipecolate oxidase, both of the D-lysine pathway, to coordinacy. However, this effect was not observed if the enzyme pair was from different pathways of lysine metabolism in this organism (i.e., the D- and L-lysine pathways).

摘要

恶臭假单胞菌将D-赖氨酸代谢为δ1-哌啶-2-羧酸和L-哌啶酸。这条分解代谢途径的第二步由δ1-哌啶-2-羧酸还原酶催化。该酶是从以DL-赖氨酸为底物生长的细胞中分离纯化得到的。该酶非常不稳定,经过六步纯化程序后,活性回收率低且纯度低。该酶的最适pH为8.0至8.3。δ1-哌啶-2-羧酸和NADPH的Km值分别为0.23和0.13 mM。浓度高于0.15 mM的NADPH对该酶有抑制作用。δ1-吡咯啉-5-羧酸、焦谷氨酸和NADH是δ1-哌啶-2-羧酸还原酶的劣质底物或辅酶。从δ1-哌啶-2-羧酸到L-哌啶酸的酶促反应是不可逆的。浓度为1 mM的EDTA、焦磷酸钠和二硫苏糖醇在储存期间可保护该酶。浓度为0.1 mM的Zn2+、Mn2+、Hg2+、Co2+和对氯汞苯甲酸几乎完全抑制该酶。该酶的分子量约为200,000。D-赖氨酸和L-赖氨酸都是该酶的良好诱导剂。δ1-哌啶-2-羧酸和L-哌啶酸都不是该酶的有效诱导剂。恶臭假单胞菌细胞在D-赖氨酸上生长仅经过5至8小时的延迟,添加0.01%的α-酮戊二酸或其他易于代谢的化合物可以消除这种延迟。这种补充剂还将D-赖氨酸途径中的该酶和哌啶酸氧化酶的非协同诱导转变为协同诱导。然而,如果该酶对来自该生物体赖氨酸代谢的不同途径(即D-和L-赖氨酸途径),则未观察到这种效果。

相似文献

1
delta1-piperideine-2-carboxylate reductase of Pseudomonas putida.
J Bacteriol. 1982 Mar;149(3):864-71. doi: 10.1128/jb.149.3.864-871.1982.
3
D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism.
J Bacteriol. 1974 Feb;117(2):753-64. doi: 10.1128/jb.117.2.753-764.1974.
5
Assay of delta 1-piperideine-2-carboxylate and synthesis of L-[14C]pipecolate from DL-[14C]pipecolate.
Anal Biochem. 1982 Sep 15;125(2):376-85. doi: 10.1016/0003-2697(82)90019-7.
6
Enzymatic synthesis of L-pipecolic acid by Delta1-piperideine-2-carboxylate reductase from Pseudomonas putida.
Biosci Biotechnol Biochem. 2006 Sep;70(9):2296-8. doi: 10.1271/bbb.60125. Epub 2006 Sep 7.
7
Identification of the initial steps in D-lysine catabolism in Pseudomonas putida.
J Bacteriol. 2007 Apr;189(7):2787-92. doi: 10.1128/JB.01538-06. Epub 2007 Jan 26.

引用本文的文献

1
An overview of sulfur-containing compounds originating from natural metabolites: Lanthionine ketimine and its analogues.
Anal Biochem. 2020 Feb 15;591:113543. doi: 10.1016/j.ab.2019.113543. Epub 2019 Dec 17.
2
On the evolutionary significance of the size and planarity of the proline ring.
Naturwissenschaften. 2012 Oct;99(10):789-99. doi: 10.1007/s00114-012-0960-y. Epub 2012 Sep 15.
3
Pipecolic acid in microbes: biosynthetic routes and enzymes.
J Ind Microbiol Biotechnol. 2006 Jun;33(6):401-7. doi: 10.1007/s10295-006-0078-3. Epub 2006 Jan 18.
5
Osmoprotection by pipecolic acid in Sinorhizobium meliloti: specific effects of D and L isomers.
Appl Environ Microbiol. 2000 Jun;66(6):2358-64. doi: 10.1128/AEM.66.6.2358-2364.2000.
6
Lysine biosynthesis in Rhodotorula glutinis: properties of pipecolic acid oxidase.
J Bacteriol. 1982 Sep;151(3):1073-7. doi: 10.1128/jb.151.3.1073-1077.1982.
7
Blood-brain barrier transport of L-pipecolic acid in various rat brain regions.
Neurochem Res. 1983 Sep;8(9):1087-96. doi: 10.1007/BF00964924.

本文引用的文献

2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
STUDIES ON L-PROLINE:NAD(P)+2-OXIDOREDUCTASE OF HOG KIDNEY.
Biochim Biophys Acta. 1965 Apr 26;99:78-95. doi: 10.1016/s0926-6593(65)80009-1.
6
DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS.
Ann N Y Acad Sci. 1964 Dec 28;121:404-27. doi: 10.1111/j.1749-6632.1964.tb14213.x.
7
DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY.
Ann N Y Acad Sci. 1964 Dec 28;121:321-49. doi: 10.1111/j.1749-6632.1964.tb14207.x.
9
Metabolism of L-lysine by bacterial enzymes. V. Glutaric semialdehyde dehydrogenase.
J Biochem. 1961 Feb;49:154-7. doi: 10.1093/oxfordjournals.jbchem.a127272.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验