Cann J R, Fink N H, Winzor D J
Arch Biochem Biophys. 1983 Feb 15;221(1):57-63. doi: 10.1016/0003-9861(83)90121-2.
In an attempt to explain the unusual electrophoretic behavior of fish muscle creatine kinase, a phenomenological theory of transport of reacting systems has been formulated for the electrophoresis of a sulfhydryl protein undergoing oxidation in the presence of a gradient of molecular oxygen. The model assumes slow O2-oxidation of sulfhydryl groups followed by rather rapidly reversible sulfhydryl-disulfide interchange with concomitant change in the electrophoretic mobility of the protein. The computed electrophoretic patterns for this model exhibit a sharp, unimodal ascending boundary but a bimodal descending boundary in which the proportions of the two peaks are time dependent. There is a striking similarity between the theoretical patterns and their experimental counterparts (M.D. Doherty, D.A. Bergman, V.M. Re-Miller, and D.J. Winzor, 1980, Arch. Biochem. Biophys. 202, 558-564); and hence support for consideration of the electrophoresis of fish muscle creatine kinase in these terms.
为了解释鱼肌肉肌酸激酶异常的电泳行为,已针对在分子氧梯度存在下进行氧化的巯基蛋白的电泳,制定了一种反应体系迁移的唯象理论。该模型假定巯基的O2氧化缓慢,随后是相当快速的可逆巯基 - 二硫键交换,并伴随着蛋白质电泳迁移率的变化。此模型计算出的电泳图谱显示出一个尖锐的单峰上升边界,但下降边界为双峰,其中两个峰的比例随时间变化。理论图谱与其实验对应物之间存在惊人的相似性(M.D.多尔蒂、D.A.伯格曼、V.M.雷 - 米勒和D.J.温佐尔,1980年,《生物化学与生物物理学报》202卷,558 - 564页);因此支持从这些方面考虑鱼肌肉肌酸激酶的电泳。