Suppr超能文献

[与临界曲率现象相关的可兴奋介质中自激波的不稳定性]

[Instabilities of autowaves in excitable media associated with critical curvature phenomena].

作者信息

Pertsov A M, Panfilov A V, Medvedeva F U

出版信息

Biofizika. 1983 Jan-Feb;28(1):100-2.

PMID:6830879
Abstract

While studying a two-dimensional excitable medium described by the Fitz--Hugh equation on a digital computer a new type of instabilities was discovered which had no analogy in one-dimensional systems. It has been shown that when the wave encounters upon an obstacle the front breaks, diverge, thus destroying the excitation waves. Initiation of such instabilities is associated with critical curvative phenomenon. The instabilities appear when the front curvature in the region of wave break is greater than the critical one for the given medium. The instabilities found are observed when medium excitability is suppressed. This phenomenon may be related to the processes which occur in the damage regions of the myocardium tissue.

摘要

在数字计算机上研究由菲茨休方程描述的二维可激发介质时,发现了一种新型不稳定性,它在一维系统中没有类似情况。已经表明,当波遇到障碍物时,波前会破裂、发散,从而破坏激发波。这种不稳定性的产生与临界曲率现象有关。当波破裂区域的波前曲率大于给定介质的临界曲率时,就会出现这种不稳定性。当介质兴奋性受到抑制时,可以观察到所发现的这种不稳定性。这种现象可能与心肌组织损伤区域中发生的过程有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验