Suppr超能文献

细菌视紫红质光循环初级阶段中的能量存储。

Energy storage in the primary step of the photocycle of bacteriorhodopsin.

作者信息

Birge R R, Cooper T M

出版信息

Biophys J. 1983 Apr;42(1):61-9. doi: 10.1016/S0006-3495(83)84369-0.

Abstract

A pulsed-dye laser low temperature photocalorimeter is used to study the enthalpy differences between light-adapted bacteriorhodopsin (bR568) and its primary photoproduct (K) at 77 K. A key feature of our experimental method is the use of the laser-induced photostationary state as an internal reference. Analyses of the forward (bR leads to K), reverse (K leads to bR), and mixed (bR in equilibrium K) photoreactions were carried out to measure delta H12 = EK - EbR. All three experiments yielded identical values of delta H12 within experimental error (delta Have12 = 15.8 +/- 2.5 kcal mol-1). Accordingly, the primary event in the photocycle of light-adapted bacteriorhodopsin stores approximately 30% of the absorbed photon energy at the 568-nm absorption maximum. We observe that the quantum yields phi f1(bR leads to K) and phi r2(K leads to bR) add up to unity within experimental error: phi f1 + phi r2 = 1.02 +/- 0.19 for phi f1 in the range 0.28-0.33. A theoretical analysis of energy storage in K suggests that at least one-half of the enthalpy difference between K and bR is associated with charge separation accompanying chromophore isomerization.

摘要

一台脉冲染料激光低温光量热计被用于研究在77K下光适应型细菌视紫红质(bR568)与其初级光产物(K)之间的焓差。我们实验方法的一个关键特征是使用激光诱导的光稳态作为内部参考。对正向(bR转变为K)、反向(K转变为bR)和混合(bR与K处于平衡态)光反应进行了分析,以测量ΔH12 = EK - EbR。在实验误差范围内,所有这三个实验都得到了相同的ΔH12值(ΔH平均12 = 15.8±2.5千卡/摩尔)。因此,在光适应型细菌视紫红质的光循环中,初级事件在568纳米吸收峰处储存了大约30%的吸收光子能量。我们观察到,量子产率φf1(bR转变为K)和φr2(K转变为bR)在实验误差范围内相加等于1:对于0.28 - 0.33范围内的φf1,φf1 + φr2 = 1.02±0.19。对K中能量储存的理论分析表明,K和bR之间至少一半的焓差与发色团异构化伴随的电荷分离有关。

相似文献

1
Energy storage in the primary step of the photocycle of bacteriorhodopsin.
Biophys J. 1983 Apr;42(1):61-9. doi: 10.1016/S0006-3495(83)84369-0.
2
The quantum efficiency of the bacteriorhodopsin photocycle.
Biophys J. 1977 Feb;17(2):179-83. doi: 10.1016/S0006-3495(77)85635-X.
3
Flash kinetic study of the last steps in the photoinduced reaction cycle of bacteriorhodopsin.
Biochim Biophys Acta. 1978 Oct 11;504(1):175-86. doi: 10.1016/0005-2728(78)90016-6.
4
On the primary quantum yields in the bacteriorhodopsin photocycle.
Biophys J. 1976 Jul;16(7):839-43. doi: 10.1016/S0006-3495(76)85732-3.
5
Photoconversion from the light-adapted to the dark-adapted state of bacteriorhodopsin.
Biophys J. 1985 Aug;48(2):201-8. doi: 10.1016/S0006-3495(85)83773-5.
6
Enthalpy changes during the photochemical cycle of bacteriorhodopsin.
Biophys J. 1979 Feb;25(2 Pt 1):355-64. doi: 10.1016/s0006-3495(79)85297-2.
8
Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle.
Biophys J. 1989 Feb;55(2):263-74. doi: 10.1016/S0006-3495(89)82801-2.
10
Photochemistry and fluorescence of bacteriorhodopsin excited in its 280-nm absorption band.
Biochemistry. 1981 Jan 6;20(1):205-9. doi: 10.1021/bi00504a034.

引用本文的文献

1
Time-resolved photoacoustics of channelrhodopsins: early energetics and light-driven volume changes.
Photochem Photobiol Sci. 2023 Mar;22(3):477-486. doi: 10.1007/s43630-022-00327-8. Epub 2022 Oct 23.
2
Modulation of Light Energy Transfer from Chromophore to Protein in the Channelrhodopsin ReaChR.
Biophys J. 2020 Aug 4;119(3):705-716. doi: 10.1016/j.bpj.2020.06.031. Epub 2020 Jul 10.
3
Spectroscopic ruler for measuring active-site distortions based on Raman optical activity of a hydrogen out-of-plane vibration.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):8671-8675. doi: 10.1073/pnas.1806491115. Epub 2018 Aug 13.
4
Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism.
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2608-E2615. doi: 10.1073/pnas.1617446114. Epub 2017 Mar 13.
5
A multi-scale-multi-stable model for the rhodopsin photocycle.
Molecules. 2014 Sep 18;19(9):14961-78. doi: 10.3390/molecules190914961.
6
Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.
Chem Rev. 2014 Jan 8;114(1):126-63. doi: 10.1021/cr4003769. Epub 2013 Dec 23.
8
Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20172-7. doi: 10.1073/pnas.1007000107. Epub 2010 Nov 3.
9
Early picosecond events in the photocycle of bacteriorhodopsin.
Biophys J. 1986 Mar;49(3):651-62. doi: 10.1016/S0006-3495(86)83692-X.
10
The effect of protonation and electrical interactions on the stereochemistry of retinal schiff bases.
Biophys J. 1985 Mar;47(3):415-30. doi: 10.1016/S0006-3495(85)83933-3.

本文引用的文献

1
Photoacoustic calorimetry of purple membrane.
Biophys J. 1982 Jan;37(1):4-6. doi: 10.1016/S0006-3495(82)84570-0.
2
Light isomerizes the chromophore of bacteriorhodopsin.
Nature. 1980 Sep 25;287(5780):351-3. doi: 10.1038/287351a0.
3
Molecular dynamics of trans-cis isomerization in bathorhodopsin.
Biophys J. 1981 Jun;34(3):517-34. doi: 10.1016/S0006-3495(81)84865-5.
4
5
Photoacoustic photocalorimetry and spectroscopy of Halobacterium halobium purple membranes.
Biophys J. 1982 Feb;37(2):405-15. doi: 10.1016/S0006-3495(82)84686-9.
6
Photophysics of light transduction in rhodopsin and bacteriorhodopsin.
Annu Rev Biophys Bioeng. 1981;10:315-54. doi: 10.1146/annurev.bb.10.060181.001531.
7
Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium.
Biophys J. 1975 Sep;15(9):955-62. doi: 10.1016/S0006-3495(75)85875-9.
8
Improved isolation procedures for the purple membrane of Halobacterium halobium.
Prep Biochem. 1975;5(2):161-78. doi: 10.1080/00327487508061568.
9
On the primary quantum yields in the bacteriorhodopsin photocycle.
Biophys J. 1976 Jul;16(7):839-43. doi: 10.1016/S0006-3495(76)85732-3.
10
On the origin of the red emission of light adapted purple membrane of Halobacterium halobium.
FEBS Lett. 1977;78(1):57-60. doi: 10.1016/0014-5793(77)80272-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验