Suppr超能文献

牛和鱿鱼视紫红质中视黄醛在77K时的初级光化学和光异构化

Primary photochemistry and photoisomerization of retinal at 77 degrees K in cattle and squid rhodopsins.

作者信息

Suzuki T, Callender R H

出版信息

Biophys J. 1981 May;34(2):261-70. doi: 10.1016/S0006-3495(81)84848-5.

Abstract

The relative quantum yields of the photoreactions Rhodopsin in equilibrium Bathorhodopsin in equilibrium Isorhodopsin over an extended wavelength region have been determined in cattle and squid rhodopsins at 77 degrees K. The quantum yields were found to be wavelength independent and unchanged for samples suspended in D2O. The rhodopsin-bathorhodopsin forward and backward quantum yields sum to larger than one. These results are consistent with the previous suggestion that the excited singlet potential of rhodopsin has a single minimum along the 11-12 torsional coordinate. The values of the quantum yields are important for evaluating dynamic models of the rhodopsin-bathorhodopsin transition. We conclude that equilibration in the common excited state afer excitation of rhodopsin, as previously suggested, does not occur. Models involving molecular excitation trajectories conserving torsional momenta and excited state to ground state surface crossings better fit the data, and a semiquantitative analysis is presented. Probabilities of surface crossings are calculated.

摘要

在77K下,已测定牛和鱿鱼视紫红质在扩展波长区域内光反应视紫红质⇌平衡态视紫红质⇌平衡态异视紫红质的相对量子产率。发现量子产率与波长无关,且对于悬浮在D2O中的样品没有变化。视紫红质-视紫红质平衡态的正向和反向量子产率之和大于1。这些结果与之前的建议一致,即视紫红质的激发单重态势能沿11-12扭转坐标有一个单一最小值。量子产率的值对于评估视紫红质-视紫红质平衡态转变的动力学模型很重要。我们得出结论,如之前所建议的,视紫红质激发后在共同激发态的平衡不会发生。涉及保持扭转动量的分子激发轨迹和激发态到基态表面交叉的模型更符合数据,并进行了半定量分析。计算了表面交叉的概率。

相似文献

1
2
The nature of the primary photochemical events in rhodopsin and isorhodopsin.
Biophys J. 1988 Mar;53(3):367-85. doi: 10.1016/S0006-3495(88)83114-X.
3
Molecular dynamics of trans-cis isomerization in bathorhodopsin.
Biophys J. 1981 Jun;34(3):517-34. doi: 10.1016/S0006-3495(81)84865-5.
6
Fluorescence quantum yield of visual pigments: evidence for subpicosecond isomerization rates.
Proc Natl Acad Sci U S A. 1984 Aug;81(15):4790-4. doi: 10.1073/pnas.81.15.4790.
8
Kinetic study of photoregeneration process of digitonin-solubilized squid rhodopsin.
Biochim Biophys Acta. 1978 Jun 8;502(3):495-506. doi: 10.1016/0005-2728(78)90082-8.

引用本文的文献

1
Retinoid dynamics in vision: from visual cycle biology to retina disease treatments.
Pharmacol Ther. 2025 Jun 21;273:108902. doi: 10.1016/j.pharmthera.2025.108902.
2
Reversible Photochromic Reactions of Bacteriorhodopsin from at Femto- and Picosecond Times.
Molecules. 2024 Oct 13;29(20):4847. doi: 10.3390/molecules29204847.
3
Optical Switching Between Long-lived States of Opsin Transmembrane Voltage Sensors.
Photochem Photobiol. 2021 Sep;97(5):1001-1015. doi: 10.1111/php.13428. Epub 2021 May 14.
4
Shedding new light on the generation of the visual chromophore.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19629-19638. doi: 10.1073/pnas.2008211117. Epub 2020 Aug 5.
5
Efficient Conversion of Light to Chemical Energy: Directional, Chiral Photoswitches with Very High Quantum Yields.
Angew Chem Int Ed Engl. 2020 Aug 24;59(35):15081-15086. doi: 10.1002/anie.202005361. Epub 2020 Jun 8.
6
The Two-Photon Reversible Reaction of the Bistable Jumping Spider Rhodopsin-1.
Biophys J. 2019 Apr 2;116(7):1248-1258. doi: 10.1016/j.bpj.2019.02.025. Epub 2019 Mar 5.
7
Low-Temperature Trapping of Photointermediates of the Rhodopsin E181Q Mutant.
SOJ Biochem. 2014;1(1). doi: 10.15226/2376-4589/1/1/00103.
9
Wavelength dependent cis-trans isomerization in vision.
Biochemistry. 2001 Nov 20;40(46):13774-8. doi: 10.1021/bi0116137.
10
The first step in vision occurs in femtoseconds: complete blue and red spectral studies.
Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11762-6. doi: 10.1073/pnas.90.24.11762.

本文引用的文献

1
THE ACTION OF LIGHT ON RHODOPSIN.
Proc Natl Acad Sci U S A. 1958 Feb;44(2):130-9. doi: 10.1073/pnas.44.2.130.
2
TRANSFORMATIONS OF SQUID RHODOPSIN AT LOW TEMPERATURES.
Nature. 1964 Jan 25;201:340-5. doi: 10.1038/201340a0.
3
Pre-lumirhodopsin and the bleaching of visual pigments.
Nature. 1963 Mar 30;197:1279-86. doi: 10.1038/1971279a0.
4
Resonance Raman studies of the primary photochemical event in visual pigments.
Biophys J. 1980 Jan;29(1):79-94. doi: 10.1016/S0006-3495(80)85119-8.
5
Dichroism in the retina at -196 degrees C.
Vision Res. 1970 Oct;10(10):925-38. doi: 10.1016/0042-6989(70)90070-2.
6
The use of Ammonyx LO in the purification of rhodopsin and rod outer segments.
Vision Res. 1971 Sep;11(9):1007-9. doi: 10.1016/0042-6989(71)90220-3.
7
Photodichroism of rhodopsin solutions at -196 degrees C.
Photochem Photobiol. 1972 Mar;15(3):253-68. doi: 10.1111/j.1751-1097.1972.tb07330.x.
8
Resonance Raman spectroscopy of rhodopsin in retinal disk membranes.
Biochemistry. 1974 Sep 24;13(20):4243-8. doi: 10.1021/bi00717a027.
9
Studies on cephalopod rhodopsin: photoisomerization of the chromophore.
Biochim Biophys Acta. 1976 Apr 23;428(2):321-38. doi: 10.1016/0304-4165(76)90040-4.
10
A new facet in rhodopsin photochemistry.
Photochem Photobiol. 1976 Oct;24(4):363-7. doi: 10.1111/j.1751-1097.1976.tb06837.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验