Suppr超能文献

Dose effects of morphine on the spontaneous unit activity recorded from the thalamus, hypothalamus, septum, hippocampus, reticular formation, central gray, and caudate nucleus.

作者信息

Dafny N, Burks T F, Bergmann F

出版信息

J Neurosci Res. 1983;9(2):115-26. doi: 10.1002/jnr.490090203.

Abstract

Spontaneous activity was recorded from 652 units in 8 subcortical structures of unanesthetized rats. Recordings were obtained in central gray, mesencephalic reticular formation, parafasciculus thalami, caudate nucleus, anterior and ventromedial hypothalamus, lateral septum, and dorsal hippocampus. Eighty recordings were obtained from untreated animals and 80 from saline-injected controls, none of which showed any significant changes of unit activity during the 4- 5-hr observation period. The effect of morphine, given in 5 incremental doses from 0.5 to 30.0 mg/kg ip, was followed in 492 units. Morphine enhanced or depressed spontaneous discharge rates, or caused biphasic effects, ie enhancement alternating with depression and vice versa. Naloxone induced increase in firing after either effect of morphine, or reduced spontaneous activity after morphine-induced increases. However, when morphine reduced neuronal discharges, naloxone never caused further depression. In 86 units, morphine at any dosage failed to alter neuronal activity, but in 54 of these units naloxone nevertheless induced alterations in firing rates. The pattern of responses to morphine differed between all 8 brain regions examined and was characteristic for each individual structure. This is the first systematic study describing the dose-response characteristics of morphine in 8 brain sites recorded simultaneously. Furthermore, it utilized freely behaving animals without the interference of anesthetics, which are themselves known to interact with opiates. The variety of response patterns seen supports the neuropharmacological evidence for multiple opiate receptors or multiple sites of opiate action.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验