Olney J W, deGubareff T, Sloviter R S
Brain Res Bull. 1983 May;10(5):699-712. doi: 10.1016/0361-9230(83)90038-2.
Sustained electrical stimulation of the perforant path evokes granule cell population spikes and epileptiform discharges, abolishes recurrent inhibition in the granule cell layer and induces a reproducible pattern of hippocampal damage (see preceding paper, this volume, for electrophysiological and light microscopic findings). Electron microscopic findings described here reveal that the hippocampal damage is identical in pattern and cytopathological detail to that associated with sustained limbic seizures induced by chemical convulsants such as kainic acid, folic acid and dipiperidinoethane. Acutely swollen dendritic segments distributed in a laminar pattern corresponding closely with the termination of putative glutamate or aspartate-containing fibers, including those of the perforant path, were a conspicuous finding. Cell bodies of CA1 and CA3 pyramidal neurons and various interneurons in the hilus and elsewhere displayed degenerative changes ranging from mild to severe. Both the dendritic and somal degenerative changes closely resemble the "excitotoxic" type of damage that the putative transmitters glutamate and aspartate are known to cause. It is proposed, therefore, that sustained electrical stimulation of the perforant path results in excessive synaptic release and accumulation of glutamate (or aspartate) at numerous dendrosomal receptors in the hippocampus with consequent degeneration of the dendrosomal structures housing these receptors. Early excitotoxic effects on interneurons that mediate recurrent inhibition may play an important role in the observed loss of recurrent inhibition and in the evolution of subsequent excitotoxic degeneration in the hippocampus.
对穿通通路进行持续电刺激可诱发颗粒细胞群体峰电位和癫痫样放电,消除颗粒细胞层的回返抑制,并诱导出可重复的海马损伤模式(有关电生理和光学显微镜检查结果,请参阅本期前一篇论文)。此处描述的电子显微镜检查结果显示,海马损伤在模式和细胞病理学细节上与由化学惊厥剂(如 kainic 酸、叶酸和二哌啶乙烷)诱发的持续性边缘叶癫痫相关的损伤相同。急性肿胀的树突节段呈层状分布,与推测的含谷氨酸或天冬氨酸纤维(包括穿通通路的纤维)的终末密切对应,这是一个显著发现。CA1 和 CA3 锥体细胞以及海马齿状回和其他部位的各种中间神经元的细胞体显示出从轻度到重度的退行性变化。树突和细胞体的退行性变化都与推测的递质谷氨酸和天冬氨酸已知会引起的“兴奋性毒性”损伤类型非常相似。因此,有人提出,对穿通通路进行持续电刺激会导致海马中大量树突-体细胞受体处谷氨酸(或天冬氨酸)的突触过度释放和积累,从而导致容纳这些受体的树突-体细胞结构退化。对介导回返抑制的中间神经元的早期兴奋性毒性作用可能在观察到的回返抑制丧失以及随后海马兴奋性毒性退化的演变中起重要作用。