Suppr超能文献

卵磷脂双分子层。密度测量与分子相互作用。

Lecithin bilayers. Density measurement and molecular interactions.

作者信息

Nagle J F, Wilkinson D A

出版信息

Biophys J. 1978 Aug;23(2):159-75. doi: 10.1016/S0006-3495(78)85441-1.

Abstract

Density measurement are reported for bilayer dispersions of a series of saturated lecithins. For chain lengths with, respectively, 14, 15, 16, 17, and 18 carbons per chain, the values for the volume changes at the main transition are 0.027, 0.031, 0.037, 0.040 and 0.045 ml/g. The main transition temperature extrapolates with increasing chain length to the melting temperature of polyethylene. Volume changes at the lower transition are an order of magnitude smaller than the main transition. Single phase thermal expansion coefficients are also reported. The combination of X-ray data and density data indicated that the volume changes are predominantly due to the hydrocarbon chains, thus enabling the volume vCH2 of the methylene groups to be computed as a function of temperature. From this and knowledge of intermolecular interactions in hydrocarbon chains, the change in the interchain van der Waals energy, delta UvdW, at the main transition is computed for the lecithins and also for the alkanes and polyethylene at the melting transition. Using the experimental enthalpies of transition and delta UvdW, the energy equation is consistently balanced for all three systems. This yields estimates of the change in the number of gauche rotamers in the lecithins at the main transition. The consistency of these calculations supports the conclusion that the most important molecular energies for the main transition in lecithin bilayers are the hydrocarbon chain interactions and the rotational isomeric energies, and the conclusion that the main phase transition is analogous to the melting transition in the alkanes from the hexagonal phase to the liquid phase, but with some modifications.

摘要

报道了一系列饱和卵磷脂双层分散体的密度测量结果。对于每条链分别含有14、15、16、17和18个碳原子的链长,主转变时的体积变化值分别为0.027、0.031、0.037、0.040和0.045 ml/g。主转变温度随着链长增加外推至聚乙烯的熔点。较低转变时的体积变化比主转变小一个数量级。还报道了单相热膨胀系数。X射线数据和密度数据的结合表明,体积变化主要归因于烃链,从而能够计算亚甲基的体积vCH2随温度的变化。基于此以及对烃链中分子间相互作用的了解,计算了卵磷脂在主转变时以及烷烃和聚乙烯在熔化转变时链间范德华能的变化量ΔUvdW。利用实验测得的转变焓和ΔUvdW,对所有三个体系的能量方程进行了一致的平衡。由此得出了卵磷脂在主转变时gauche旋转异构体数量变化的估计值。这些计算结果的一致性支持了以下结论:卵磷脂双层主转变中最重要的分子能量是烃链相互作用和旋转异构体能量,以及主相变类似于烷烃从六方相到液相的熔化转变,但有一些修正的结论。

相似文献

1
Lecithin bilayers. Density measurement and molecular interactions.
Biophys J. 1978 Aug;23(2):159-75. doi: 10.1016/S0006-3495(78)85441-1.
3
A self-consistent chain model for the phase transitions in lipid bilayer membranes.
Biophys J. 1984 Sep;46(3):371-82. doi: 10.1016/S0006-3495(84)84033-3.
7
Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence.
Biophys J. 1996 Aug;71(2):885-91. doi: 10.1016/S0006-3495(96)79290-1.
8
Specific heats of lipid dispersions in single phase regions.
Biochim Biophys Acta. 1982 May 21;688(1):107-15. doi: 10.1016/0005-2736(82)90584-3.
9
Kinetics of the crystalline-liquid crystalline phase transition of dimyristoyl L-alpha-lecithin bilayers.
Proc Natl Acad Sci U S A. 1974 Jul;71(7):2684-8. doi: 10.1073/pnas.71.7.2684.
10
Dilatometric studies of isobranched phosphatidylcholines.
Biochim Biophys Acta. 1986 Dec 1;863(1):33-44. doi: 10.1016/0005-2736(86)90384-6.

引用本文的文献

1
Allosteric coupling between a lipid bilayer and a membrane protein.
Biophys J. 2025 Aug 19;124(16):2613-2626. doi: 10.1016/j.bpj.2025.06.033. Epub 2025 Jun 27.
2
Physical Properties of Lens Membranes in Animals with Different Lifespans.
Biomolecules. 2025 Jun 10;15(6):851. doi: 10.3390/biom15060851.
3
Structural and Dynamical Response of Lipid Bilayers to Solvation of an Amphiphilic Anesthetic.
J Phys Chem B. 2025 Feb 6;129(5):1563-1585. doi: 10.1021/acs.jpcb.4c05176. Epub 2025 Jan 24.
4
Gramicidin A in Asymmetric Lipid Membranes.
Biomolecules. 2024 Dec 20;14(12):1642. doi: 10.3390/biom14121642.
6
Alteration of Average Thickness of Lipid Bilayer by Membrane-Deforming Inclusions.
Biomolecules. 2023 Nov 30;13(12):1731. doi: 10.3390/biom13121731.
7
Implementation of a self-consistent slab model of bilayer structure in the suite.
J Appl Crystallogr. 2021;54(1). doi: 10.1107/s1600576720015526.
9
Capturing Lipid Nanodisc Shape and Properties Using a Continuum Elastic Theory.
J Chem Theory Comput. 2023 Feb 28;19(4):1360-1369. doi: 10.1021/acs.jctc.2c01054. Epub 2023 Feb 1.
10
Exploring the Lipid World Hypothesis: A Novel Scenario of Self-Sustained Darwinian Evolution of the Liposomes.
Astrobiology. 2023 Mar;23(3):344-357. doi: 10.1089/ast.2021.0161. Epub 2023 Jan 30.

本文引用的文献

1
Spatial configuration of macromolecular chains.
Science. 1975 Jun 27;188(4195):1268-76. doi: 10.1126/science.188.4195.1268.
2
On the quantitative interpretation of biomembrane structure by Raman spectroscopy.
Biochim Biophys Acta. 1977 Mar 1;465(2):260-74. doi: 10.1016/0005-2736(77)90078-5.
4
Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases.
J Mol Biol. 1973 Apr 25;75(4):711-33. doi: 10.1016/0022-2836(73)90303-3.
5
Effect of sonication on the structure of lecithin bilayers.
Biochemistry. 1972 Nov 21;11(24):4573-81. doi: 10.1021/bi00774a024.
6
Dilatometry of dilute suspensions of synthetic lecithin aggregates.
Biochemistry. 1972 Nov 21;11(24):4558-62. doi: 10.1021/bi00774a020.
7
Lipid bilayer phase transition: density measurements and theory.
Proc Natl Acad Sci U S A. 1973 Dec;70(12):3443-4. doi: 10.1073/pnas.70.12.3443.
10
The fluid state of lecithin bilayers.
J Supramol Struct. 1973;1(4):281-4. doi: 10.1002/jss.400010405.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验