Trotta R J, Sullivan S G, Stern A
Biochem J. 1983 Jun 15;212(3):759-72. doi: 10.1042/bj2120759.
Red cells exposed to t-butyl hydroperoxide undergo lipid peroxidation, haemoglobin degradation and hexose monophosphate-shunt stimulation. By using the lipid-soluble antioxidant 2,6-di-t-butyl-p-cresol, the relative contributions of t-butyl hydroperoxide and membrane lipid hydroperoxides to oxidative haemoglobin changes and hexose monophosphate-shunt stimulation were determined. About 90% of the haemoglobin changes and all of the hexose monophosphate-shunt stimulation were caused by t-butyl hydroperoxide. The remainder of the haemoglobin changes appeared to be due to reactions between haemoglobin and lipid hydroperoxides generated during membrane peroxidation. After exposure of red cells to t-butyl hydroperoxide, no lipid hydroperoxides were detected iodimetrically, whether or not glucose was present in the incubation. Concentrations of 2,6-di-t-butyl-p-cresol, which almost totally suppressed lipid peroxidation, significantly inhibited haemoglobin binding to the membrane but had no significant effect on hexose monophosphate shunt stimulation, suggesting that lipid hydroperoxides had been decomposed by a reaction with haem or haem-protein and not enzymically via glutathione peroxidase. The mechanisms of lipid peroxidation and haemoglobin oxidation and the protective role of glucose were also investigated. In time-course studies of red cells containing oxyhaemoglobin, methaemoglobin or carbonmono-oxyhaemoglobin incubated without glucose and exposed to t-butyl hydroperoxide, haemoglobin oxidation paralleled both lipid peroxidation and t-butyl hydroperoxide consumption. Lipid peroxidation ceased when all t-butyl hydroperoxide was consumed, indicating that it was not autocatalytic and was driven by initiation events followed by rapid propagation and termination of chain reactions and rapid non-enzymic decomposition of lipid hydroperoxides. Carbonmono-oxyhaemoglobin and oxyhaemoglobin were good promoters of peroxidation, whereas methaemoglobin relatively spared the membrane from peroxidation. The protective influence of glucose metabolism on the time course of t-butyl hydroperoxide-induced changes was greatest in carbonmono-oxyhaemoglobin-containing red cells followed in order by oxyhaemoglobin- and methaemoglobin-containing red cells. This is the reverse order of the reactivity of the hydroperoxide with haemoglobin, which is greatest with methaemoglobin. In studies exposing red cells to a wide range of t-butyl hydroperoxide concentrations, haemoglobin oxidation and lipid peroxidation did not occur until the cellular glutathione had been oxidized. The amount of lipid peroxidation per increment in added t-butyl hydroperoxide was greatest in red cells containing carbonmono-oxyhaemoglobin, followed in order by oxyhaemoglobin and methaemoglobin. Red cells containing oxyhaemoglobin and carbonmono-oxyhaemoglobin and exposed to increasing concentrations of t-butyl hydroperoxide became increasingly resistant to lipid peroxidation as methaemoglobin accumulated, supporting a relatively protective role for methaemoglobin. In the presence of glucose, higher levels of t-butyl hydroperoxide were required to induce lipid peroxidation and haemoglobin oxidation compared with incubations without glucose. Carbonmono-oxyhaemoglobin-containing red cells exposed to the highest levels of t-butyl hydroperoxide underwent haemolysis after a critical level of lipid peroxidation was reached. Inhibition of lipid peroxidation by 2,6-di-t-butyl-p-cresol below this critical level prevented haemolysis. Oxidative membrane damage appeared to be a more important determinant of haemolysis in vitro than haemoglobin degradation. The effects of various antioxidants and free-radical scavengers on lipid peroxidation in red cells or in ghosts plus methaemoglobin exposed to t-butyl hydroperoxide suggested that red-cell haemoglobin decomposed the hydroperoxide by a homolytic scission mechanism to t-butoxyl radicals.
暴露于叔丁基过氧化氢的红细胞会发生脂质过氧化、血红蛋白降解以及磷酸己糖旁路激活。通过使用脂溶性抗氧化剂2,6 - 二叔丁基对甲酚,确定了叔丁基过氧化氢和膜脂氢过氧化物对氧化血红蛋白变化及磷酸己糖旁路激活的相对贡献。约90%的血红蛋白变化以及所有的磷酸己糖旁路激活是由叔丁基过氧化氢引起的。其余的血红蛋白变化似乎是由于血红蛋白与膜过氧化过程中产生的脂氢过氧化物之间的反应所致。红细胞暴露于叔丁基过氧化氢后,无论孵育体系中是否存在葡萄糖,用碘量法均未检测到脂氢过氧化物。几乎完全抑制脂质过氧化的2,6 - 二叔丁基对甲酚浓度显著抑制血红蛋白与膜的结合,但对磷酸己糖旁路激活无显著影响,这表明脂氢过氧化物是通过与血红素或血红蛋白质反应而分解,而非通过谷胱甘肽过氧化物酶的酶促作用。还研究了脂质过氧化和血红蛋白氧化的机制以及葡萄糖的保护作用。在对不含葡萄糖且暴露于叔丁基过氧化氢的含有氧合血红蛋白、高铁血红蛋白或碳氧血红蛋白的红细胞进行的时间进程研究中,血红蛋白氧化与脂质过氧化及叔丁基过氧化氢消耗平行。当所有叔丁基过氧化氢被消耗时脂质过氧化停止,这表明它不是自动催化的,而是由引发事件驱动,随后是链反应的快速传播、终止以及脂氢过氧化物的快速非酶分解。碳氧血红蛋白和氧合血红蛋白是过氧化的良好促进剂,而高铁血红蛋白相对使膜免受过氧化。葡萄糖代谢对叔丁基过氧化氢诱导变化的时间进程的保护作用在含碳氧血红蛋白的红细胞中最大,其次是含氧合血红蛋白和高铁血红蛋白的红细胞。这与氢过氧化物与血红蛋白的反应活性顺序相反,氢过氧化物与高铁血红蛋白的反应活性最大。在将红细胞暴露于广泛浓度范围的叔丁基过氧化氢的研究中,直到细胞内谷胱甘肽被氧化后才发生血红蛋白氧化和脂质过氧化。每增加一定量的叔丁基过氧化氢,含碳氧血红蛋白的红细胞中脂质过氧化的量最大,其次是含氧合血红蛋白和高铁血红蛋白的红细胞。含有氧合血红蛋白和碳氧血红蛋白且暴露于不断增加浓度叔丁基过氧化氢的红细胞随着高铁血红蛋白的积累对脂质过氧化的抵抗力越来越强,这支持了高铁血红蛋白具有相对保护作用。与无葡萄糖孵育相比,在有葡萄糖存在的情况下需要更高水平的叔丁基过氧化氢才能诱导脂质过氧化和血红蛋白氧化。暴露于最高水平叔丁基过氧化氢的含碳氧血红蛋白的红细胞在达到临界脂质过氧化水平后发生溶血。在该临界水平以下,2,6 - 二叔丁基对甲酚对脂质过氧化的抑制可防止溶血。氧化膜损伤在体外似乎比血红蛋白降解更是溶血的一个更重要决定因素。各种抗氧化剂和自由基清除剂对暴露于叔丁基过氧化氢的红细胞或红细胞膜泡加高铁血红蛋白中脂质过氧化的影响表明,红细胞血红蛋白通过均裂机制将氢过氧化物分解为叔丁氧基自由基。