Hattori S, Iwasaki K
J Biochem. 1982 Jul;92(1):173-83. doi: 10.1093/oxfordjournals.jbchem.a133914.
The high molecular weight form of polypeptide chain elongation factor-1, or EF-1H, has been purified from pig liver to apparent homogeneity and shown to be a 1:1:1 complex of EF-1 alpha, EF-1 beta, and EF-1 gamma, namely, EF-1 alpha beta gamma (Hattori, S. and Iwasaki, K. (1980) J. Biochem. 88, 725-736). Therefore, its enzymatic properties were investigated in detail. The effects of various components such as NH4Cl, Mg(CH3COO)2, guanine nucleotides and Phe-tRNA on its heat stability were investigated and it was found that its properties were very close to those of the aminoacyl-tRNA binding enzyme from rabbit reticulocytes (McKeehan, W.L. and Hardesty, B. (1969) J. Biol. Chem. 244, 4330-4339). Furthermore, it was reported that EF-1 alpha beta gamma seemed to dissociate into EF-1 alpha and EF-1 beta gamma when guanine nucleotides were present, and also to form a complex of EF-1 alpha . GTP . [14C]Phe-tRNA when both GTP and [14C]Phe-tRNA were present. On the contrary, however, when the interaction between EF-1 alpha beta gamma and guanine nucleotides was analyzed by gel filtration at 4 degrees C, the dissociation of EF-1 alpha beta gamma could not be detected, instead the formation of binary complexes containing EF-1 alpha beta gamma and guanine nucleotides was observed. The dissociation constants of the EF-1 alpha beta gamma . GDP and EF-1 alpha beta gamma . GTP complexes were estimated to be 6.8 x 10(-6) M and 7.3 x 10(-6) M, respectively, and the number of binding sites per molecule of EF-1 alpha beta gamma for these nucleotides was estimated to be one. Little, if any, interaction was detected between EF-1 alpha beta gamma and aminoacyl-tRNA even in the presence of GTP. The controversial results obtained by different methods as described above seemed to be compatible with each other, if one assumes that the dissociation constant for the conversion of EF-1 alpha beta gamma into EF-1 alpha and EF-1 beta gamma increased with the increase in temperature. When gel filtration of EF-1 alpha beta gamma was carried out with a solution containing both GTP and [14C]Phe-tRNA, the formation of a ternary complex containing EF-1 alpha, GTP and [14C]Phe-tRNA was detected at 4 degrees C, although the amount was very small. From these results, we assumed that EF-1 alpha beta gamma interacts with GTP and aminoacyl-tRNA (aa-tRNA) according to the following sequences; EF-1 alpha beta gamma + GTP in equilibrium with EF-1 alpha beta gamma . GTP EF-1 alpha beta gamma . GTP in equilibrium with EF-1 alpha . GTP + EF-1 beta gamma EF-1 alpha . GTP + aa-tRNA in equilibrium with EF-1 alpha . GTP . aa-tRNA.
已从猪肝中纯化出高分子量形式的多肽链延长因子-1,即EF-1H,且纯化后的EF-1H显示为EF-1α、EF-1β和EF-1γ的1:1:1复合物,即EF-1αβγ(服部,S.和岩崎,K.(1980年)《生物化学杂志》88卷,725 - 736页)。因此,对其酶学性质进行了详细研究。研究了诸如NH₄Cl、Mg(CH₃COO)₂、鸟嘌呤核苷酸和苯丙氨酰 - tRNA等各种成分对其热稳定性的影响,发现其性质与兔网织红细胞的氨酰 - tRNA结合酶非常接近(麦基汉,W.L.和哈迪斯蒂,B.(1969年)《生物化学杂志》244卷,4330 - 4339页)。此外,据报道,当存在鸟嘌呤核苷酸时,EF-1αβγ似乎会解离为EF-1α和EF-1βγ,并且当同时存在GTP和[¹⁴C]苯丙氨酰 - tRNA时,还会形成EF-1α·GTP·[¹⁴C]苯丙氨酰 - tRNA复合物。然而,相反的是,当在4℃下通过凝胶过滤分析EF-1αβγ与鸟嘌呤核苷酸之间的相互作用时,未检测到EF-1αβγ的解离,而是观察到了含有EF-1αβγ和鸟嘌呤核苷酸的二元复合物的形成。EF-1αβγ·GDP和EF-1αβγ·GTP复合物的解离常数分别估计为6.8×10⁻⁶M和7.3×10⁻⁶M,并且估计每分子EF-1αβγ对这些核苷酸的结合位点数量为一个。即使在存在GTP的情况下,在EF-1αβγ与氨酰 - tRNA之间也几乎未检测到相互作用。如果假设EF-1αβγ转化为EF-1α和EF-1βγ的解离常数随温度升高而增加,那么上述通过不同方法获得的有争议的结果似乎是相互兼容的。当用同时含有GTP和[¹⁴C]苯丙氨酰 - tRNA的溶液对EF-1αβγ进行凝胶过滤时,尽管量非常小,但在4℃下检测到了含有EF-1α、GTP和[¹⁴C]苯丙氨酰 - tRNA的三元复合物的形成。根据这些结果,我们假设EF-1αβγ按照以下序列与GTP和氨酰 - tRNA(aa - tRNA)相互作用:EF-1αβγ + GTP 与 EF-1αβγ·GTP 处于平衡状态;EF-1αβγ·GTP 与 EF-1α·GTP + EF-1βγ 处于平衡状态;EF-1α·GTP + aa - tRNA 与 EF-1α·GTP·aa - tRNA 处于平衡状态。