Linscheid M, D'Angona J, Burlingame A L, Dell A, Ballou C E
Proc Natl Acad Sci U S A. 1981 Mar;78(3):1471-5. doi: 10.1073/pnas.78.3.1471.
Field desorption mass spectrometry has been used to analyze carbohydrate polymers with 5 to 14 hexose units without prior derivatization. In all examples, the molecular weight of the oligosaccharide could be determined by means of the abundant quasimolecular ions of the type MNa(+), MH(+), MNa(2) (2+), and MNa(3) (3+). Fragmentation at glycosidic linkages was observed in varying extents. The reduced oligosaccharide Man(8)GlcNAcH(2), obtained from IgM [Cohen, R. E. & Ballou, C. E. (1980) Biochemistry 19, 4345-4358], gave quasimolecular ion signals MNa(+) at m/z 1544, MH(+) at m/z 1522, MNa(2) (2+) at m/z 784, and MNa(3) (3+) at m/z 530, all corresponding to its assumed molecular weight of 1519.5. Mycobacterial methylmannose polysaccharides with the general structure Man(x)MeMan(y)-OCH(3) [Yamada, H., Cohen, R. E. & Ballou, C. E. (1979) J. Biol. Chem. 254, 1972-1979] were also successfully analyzed. Man(1)MeMan(13)-OCH(3), the largest homolog, gave the expected signal of the quasimolecular ion MNa(+) at m/z 2506. The larger polysaccharides were analyzed by using a KRATOS MS-50 mass spectrometer with a high-field magnet enabling full sensitivity to be maintained up to 3000 atomic mass units. Polysaccharides up to m/z 1978 were analyzed by using a KRATOS MS-9 mass spectrometer operated at 4 Kv. The signal-to-noise ratio, which becomes a serious problem in field desorption mass spectrometry at low accelerating voltages, and the low instrument sensitivity were improved considerably by our use of a method of adding scans with low total ion currents obtained over a longer desorption time. In this way, we obtained complete sequence information on methylmannose polysaccharides up to Man(1)MeMan(9)-OCH(3)(MNa(+) at m/z 1802). Analysis of a presumed Man(1)MeMan(7)-OCH(3), gave a spectrum consistent only with the structure Man(2)MeMan(6)-OCH(3), revealing the existence of a methylmannose homolog with 2 unmethylated mannoses at the nonreducing end of the chain.
场解吸质谱已被用于分析含5至14个己糖单元的碳水化合物聚合物,无需事先衍生化。在所有实例中,寡糖的分子量可通过MNa(+)、MH(+)、MNa₂(2+)和MNa₃(3+)类型的丰富准分子离子来确定。在不同程度上观察到糖苷键处的裂解。从IgM [科恩,R. E. & 巴卢,C. E. (1980) 《生物化学》19, 4345 - 4358] 获得的还原寡糖Man(8)GlcNAcH₂,给出了质荷比为1544的准分子离子信号MNa(+)、质荷比为1522的MH(+)、质荷比为784的MNa₂(2+)和质荷比为530的MNa₃(3+),所有这些都与其假定分子量1519.5相对应。具有通用结构Man(x)MeMan(y)-OCH₃ [山田,H.,科恩,R. E. & 巴卢,C. E. (1979) 《生物化学杂志》254, 1972 - 1979] 的分枝杆菌甲基甘露糖多糖也成功得到分析。最大的同系物Man(1)MeMan(13)-OCH₃,给出了质荷比为2506的准分子离子MNa(+)的预期信号。使用配备高场磁体的KRATOS MS - 50质谱仪对较大的多糖进行分析,可在高达3000原子质量单位的范围内保持全灵敏度。使用在4千伏下运行的KRATOS MS - 9质谱仪分析了质荷比高达1978的多糖。在低加速电压下场解吸质谱中成为严重问题的信噪比以及低仪器灵敏度,通过我们使用一种在更长解吸时间内获得的具有低总离子流的添加扫描方法得到了显著改善。通过这种方式,我们获得了直至Man(1)MeMan(9)-OCH₃(质荷比为1802的MNa(+))的甲基甘露糖多糖的完整序列信息。对假定的Man(1)MeMan(7)-OCH₃的分析,给出了仅与结构Man(2)MeMan(6)-OCH₃一致的谱图,揭示了在链的非还原端存在具有2个未甲基化甘露糖的甲基甘露糖同系物。