Stone A L, Beeler D, Oosta G, Rosenberg R D
Proc Natl Acad Sci U S A. 1982 Dec;79(23):7190-4. doi: 10.1073/pnas.79.23.7190.
We have utilized circular dichroism spectroscopy to examine the interaction of antithrombin with heparin-derived oligosaccharides and mucopolysaccharides of various sizes. Our studies demonstrate that the various complexes exhibit two major types of chiral absorption spectra. The first of these patterns is seen when octasaccharide, decasaccharide, dodecasaccharide, or tetradecasaccharide fragments bind to the protease inhibitor. The circular dichroism spectra of these complexes when compared to the spectrum of free antithrombin show several distinguishing characteristics. On the one hand, there is a marked general increase in positive chiral absorption that is maximal at 296 and 288 nm and 290 and 282.5 nm. These observations indicate perturbation of "buried" and "exposed" tryptophan residues. On the other hand, a significant augmentation in circular dichroism that peaks at 269.5 and 263 nm is noted. These findings are probably due to the summed positive and negative contributions arising from tryptophan residue(s), disulfide bridge(s), and phenylalanine residue(s). Given that these heparin fragments are able to accelerate factor Xa-antithrombin interactions but not thrombin-antithrombin interactions, the above spectral transitions must be associated with either the binding of a critical domain of the oligosaccharides to the protease inhibitor or the "activation" of the protease inhibitor with respect to factor Xa neutralization. The second of these patterns is apparent when octadecasaccharide, low molecular weight heparin (6,500), and high molecular weight heparin (22,000) interact with antithrombin. The circular dichroism spectra of these complexes compared to the spectrum of free protease inhibitor are similar to the first pattern except for changes within the 292- to 282-nm and 275- to 255-nm regions. The subtraction of the first pattern from the second pattern reveals a shallow negative band between 300 and 275 nm with potential negative minima at 290 and 283 nm as well as a deep negative band between 275 and 255 nm with possible negative minima at 268 and 262 nm. This chiral absorption profile is most likely to arise from conformational changes of a disulfide bridge(s). However, we cannot completely exclude the possibility that the above circular dichroism difference curve might be explained on the basis of transitions originating from a tryptophan residue(s). Given our method for generating the above data, these spectral alterations must be associated with the binding of a second critical domain of the mucopolysaccharide to antithrombin that is required for rapid complex formation with thrombin or the activation of the protease inhibitor with respect to the neutralization of the latter enzyme.
我们利用圆二色光谱法研究了抗凝血酶与不同大小的肝素衍生寡糖和粘多糖之间的相互作用。我们的研究表明,各种复合物呈现出两种主要类型的手性吸收光谱。当八糖、十糖、十二糖或十四糖片段与蛋白酶抑制剂结合时,会出现第一种光谱模式。将这些复合物的圆二色光谱与游离抗凝血酶的光谱相比,显示出几个显著特征。一方面,正手性吸收有明显的总体增加,在296和288 nm以及290和282.5 nm处达到最大值。这些观察结果表明“埋藏”和“暴露”的色氨酸残基受到了扰动。另一方面,在269.5和263 nm处出现了圆二色性的显著增强并达到峰值。这些发现可能是由于色氨酸残基、二硫键和苯丙氨酸残基产生的正负贡献的总和。鉴于这些肝素片段能够加速因子Xa与抗凝血酶的相互作用,但不能加速凝血酶与抗凝血酶的相互作用,上述光谱转变必定与寡糖的关键结构域与蛋白酶抑制剂的结合,或者与蛋白酶抑制剂针对因子Xa中和的“激活”有关。当十八糖、低分子量肝素(6500)和高分子量肝素(22000)与抗凝血酶相互作用时,会出现第二种光谱模式。与游离蛋白酶抑制剂的光谱相比这些复合物的圆二色光谱与第一种模式相似,只是在292至282 nm和275至255 nm区域内有变化。从第二种模式中减去第一种模式,会在300至275 nm之间显示出一个浅的负带,在290和283 nm处可能有负最小值,以及在275至255 nm之间有一个深的负带,在268和262 nm处可能有负最小值。这种手性吸收谱最有可能源于二硫键的构象变化。然而,我们不能完全排除上述圆二色性差异曲线可能基于色氨酸残基的跃迁来解释的可能性。鉴于我们生成上述数据的方法,这些光谱变化必定与粘多糖的第二个关键结构域与抗凝血酶的结合有关,这是与凝血酶快速形成复合物或蛋白酶抑制剂针对后者酶的中和作用的激活所必需的。