Suppr超能文献

细菌光合作用中初级正向反应和逆向反应之间的平衡。

The balance between primary forward and back reactions in bacterial photosynthesis.

作者信息

Rademaker H, Hoff A J

出版信息

Biophys J. 1981 May;34(2):325-44. doi: 10.1016/S0006-3495(81)84852-7.

Abstract

The temperature dependence of the bacteriochlorophyll fluorescence and reaction center triplet yield in while cells of Rhodopseudomonas sphaeroides strain 2.4.1 and of the magnetic field-induced fluorescence increase are calculated, taking into account rate constants of losses in the antenna system and of charge separation and recombination in the reaction center. Triplet and singlet yield after recombination in the reaction center are described by the radical pair mechanism. Good fits of the theoretically calculated temperature dependence with published experimental results could be obtained, assuming that ks, the rate constant for recombination of the charges on the primary donor P+ and the reduced intermediate acceptor I- to the lowest excited singlet state PI of the reaction center bacteriochlorophyll, is temperature-dependent via the Boltzmann factor Kso exp(-delta E/kT), where delta E is the energy difference between PI and P+I- and kso is the frequency factor. kg and/or kt, the rate constants for recombination to the singlet ground and triplet states, respectively, were assumed to be temperature-independent, or temperature-dependent via their exothermicity factors ki = CiT-1/2 exp(-Ei/kT) with i = g, t. Depending on the particular choice for the temperature dependence of kg and kt, best fits were obtained for delta E = 45-75 meV and recombination rate constants at 300 K of ks = 0.4-0.8 ns-1, kg = 0.08-0.12 ns-1, and kt = 0.3-0.5 ns-1. The model predicts a lifetime of the radical pair P+I- that is somewhat larger than that of delayed fluorescence; a magnetic field increases both.

摘要

考虑到天线系统中的损失速率常数以及反应中心中的电荷分离和复合速率常数,计算了球形红假单胞菌2.4.1菌株白色细胞中细菌叶绿素荧光和反应中心三重态产率的温度依赖性以及磁场诱导的荧光增加。反应中心复合后的三重态和单重态产率由自由基对机制描述。假设反应中心细菌叶绿素的初级供体P⁺和还原的中间受体I⁻上的电荷复合到最低激发单重态PI的速率常数ks通过玻尔兹曼因子Kso exp(-ΔE/kT)与温度相关,其中ΔE是PI和P⁺I⁻之间的能量差,kso是频率因子,则理论计算的温度依赖性与已发表的实验结果能很好地拟合。分别复合到单重基态和三重态的速率常数kg和/或kt被假定为与温度无关,或者通过它们的放热因子ki = CiT⁻¹/² exp(-Ei/kT)(i = g, t)与温度相关。根据kg和kt对温度依赖性的特定选择,对于ΔE = 45 - 75 meV以及300 K时的复合速率常数ks = 0.4 - 0.8 ns⁻¹、kg = 0.08 - 0.12 ns⁻¹和kt = 0.3 - 0.5 ns⁻¹,能获得最佳拟合。该模型预测自由基对P⁺I⁻的寿命略大于延迟荧光的寿命;磁场会使两者都增加。

相似文献

1
The balance between primary forward and back reactions in bacterial photosynthesis.
Biophys J. 1981 May;34(2):325-44. doi: 10.1016/S0006-3495(81)84852-7.
2
Recombination dynamics in bacterial photosynthetic reaction centers.
Biophys J. 1982 Jul;39(1):91-9. doi: 10.1016/S0006-3495(82)84494-9.
4
Magnetic field effects on radical pair intermediates in bacterial photosynthesis.
Biochim Biophys Acta. 1977 Aug 10;461(2):297-305. doi: 10.1016/0005-2728(77)90179-7.
7
Nanosecond fluorescence from chromatophores of Rhodopseudomonas sphaeroides and Rhodospirillum rubrum.
Biochim Biophys Acta. 1986 Jul 2;850(2):197-210. doi: 10.1016/0005-2728(86)90174-x.
8
Reconstituted energy transfer from antenna pigment-protein to reaction centres isolated from Rhodopseudomonas sphaeroides.
Biochim Biophys Acta. 1977 Mar 11;459(3):506-15. doi: 10.1016/0005-2728(77)90049-4.
9
Export or recombination of charges in reaction centers in intact cells of photosynthetic bacteria.
Biochim Biophys Acta. 2009 Dec;1787(12):1444-50. doi: 10.1016/j.bbabio.2009.06.007. Epub 2009 Jun 22.

引用本文的文献

1
Transfer of excitation energy in photosynthesis: some thoughts.
Photosynth Res. 1989 Apr;20(1):35-58. doi: 10.1007/BF00028621.
2
Picosecond processes in chromatophores at various excitation intensities.
Photosynth Res. 1991 Feb;27(2):83-95. doi: 10.1007/BF00033248.
3
Model for primary charge separation in reaction centers of photosynthetic bacteria.
Proc Natl Acad Sci U S A. 1982 Mar;79(6):2138-42. doi: 10.1073/pnas.79.6.2138.
4
Recombination dynamics in bacterial photosynthetic reaction centers.
Biophys J. 1982 Jul;39(1):91-9. doi: 10.1016/S0006-3495(82)84494-9.

本文引用的文献

2
Light collection and harvesting processes in bacterial photosynthesis investigated on a picosecond time scale.
Proc Natl Acad Sci U S A. 1977 May;74(5):1997-2001. doi: 10.1073/pnas.74.5.1997.
3
Electron transfer between biological molecules by thermally activated tunneling.
Proc Natl Acad Sci U S A. 1974 Sep;71(9):3640-4. doi: 10.1073/pnas.71.9.3640.
4
Magnetic field affects the fluorescence yield in reaction center preparations from Rhodopseudomonas spaeroides R-26.
Biochim Biophys Acta. 1980 Sep 5;592(2):235-9. doi: 10.1016/0005-2728(80)90184-x.
5
Carotenoid triplet yields in normal and deuterated Rhodospirillum rubrum.
Biochim Biophys Acta. 1980 Sep 5;592(2):240-57. doi: 10.1016/0005-2728(80)90185-1.
6
Fluorescence and photochemical quenching in photosynthetic reaction centers.
Proc Natl Acad Sci U S A. 1968 Dec;61(4):1243-9. doi: 10.1073/pnas.61.4.1243.
7
Reaction center preparations of Rhodopseudomonas spheroides: energy transfer and structure.
Biochim Biophys Acta. 1972 Feb 28;256(2):452-66. doi: 10.1016/0005-2728(72)90074-6.
10
Excited states of photosynthetic reaction centers at low recox potentials.
Biochim Biophys Acta. 1975 May 15;387(2):265-78. doi: 10.1016/0005-2728(75)90109-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验