Department of Chemistry and Center of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
Proc Natl Acad Sci U S A. 1982 Mar;79(6):2138-42. doi: 10.1073/pnas.79.6.2138.
We present model calculations of the dynamics of primary electron transfer (ET) in reaction centers of photosynthetic bacteria. We obtain half times of [unk]1 ps and approximately 5 ps for the first two ET processes, in excellent agreement with experimental observations. Our model is based on (i) a theoretical framework capable of describing ET in the presence of strong electronic interstate resonance coupling and (ii) energy parameters extracted from recent experimental data and molecular orbital calculations. Our analysis suggests that (i) strong electronic interstate mixing is crucial to the rapidity and efficiency of irreversible ET; (ii) possibly five rather than three electronic states participate in the transient ET prior to the reduction in vivo of the quinone complex; and (iii) conventional ET theories, which rely on weak electronic interstate mixing, are unfit for describing ET in reaction centers of photosynthetic bacteria.
我们提出了光合作用细菌反应中心的初级电子转移(ET)动力学的模型计算。我们得到了前两个 ET 过程的半时间为[unk]1 ps 和大约 5 ps,与实验观察结果非常吻合。我们的模型基于(i)一个能够描述存在强电子间共振耦合时 ET 的理论框架,以及(ii)从最近的实验数据和分子轨道计算中提取的能量参数。我们的分析表明,(i)强电子间混合对于不可逆 ET 的快速性和效率至关重要;(ii)在醌复合物体内还原之前,可能有五个而不是三个电子态参与瞬态 ET;以及(iii)依赖于弱电子间混合的传统 ET 理论不适合描述光合作用细菌反应中心的 ET。