Suppr超能文献

体外青蛙嗅球中的初级传入去极化

Primary afferent depolarization in the in vitro frog olfactory bulb.

作者信息

Jahr C E, Nicoll R A

出版信息

J Physiol. 1981 Sep;318:375-84. doi: 10.1113/jphysiol.1981.sp013871.

Abstract
  1. Experiments on the frog olfactory bulb have been performed in vitro in order to determine whether primary afferent transmission is modified by presynaptic inhibition.2. Stimulation of the olfactory nerve resulted in a prolonged depolarization of the olfactory nerve as recorded across a sucrose gap. Unstimulated olfactory nerve fibres adjacent to the stimulated fibres were also depolarized.3. An excitability increase of the olfactory nerve terminals was found that lasted the entire duration of the olfactory nerve depolarization, indicating that the terminals themselves were depolarized. Both the olfactory nerve depolarization and the excitability increase were blocked by cobalt and manganese ions.4. Low concentrations of glutamate were found to produce a substantial depolarization of the olfactory nerve. Although gamma-aminobutyric acid (GABA) also elicited a depolarization of the olfactory nerve, picrotoxin, a GABA antagonist, did not reduce the stimulus-evoked olfactory nerve depolarization.5. Recording with potassium-sensitive electrodes in the olfactory nerve terminal region demonstrated an increase in extracellular potassium with the same rise time and duration as the olfactory nerve depolarization. Cobalt and manganese blocked the potassium increase and the olfactory nerve depolarization without affecting the presynaptic action potential.6. The focally recorded extracellular current resulting from orthodromic synaptic excitation of the secondary olfactory relay neurones was blocked at short intervals by paired stimulation and decreased for the duration of the olfactory nerve depolarization. This suggests a decreased release of transmitter from the olfactory nerve terminals.7. The possible role of potassium and/or a neurotransmitter in generating the olfactory nerve depolarization and inhibition is discussed.
摘要
  1. 为了确定初级传入神经传递是否会被突触前抑制所改变,已在体外对青蛙嗅球进行了实验。

  2. 刺激嗅神经会导致嗅神经出现长时间的去极化,这是通过蔗糖间隙记录到的。与受刺激纤维相邻的未受刺激的嗅神经纤维也会去极化。

  3. 发现嗅神经末梢的兴奋性增加,这种增加在嗅神经去极化的整个过程中持续存在,这表明末梢本身发生了去极化。嗅神经去极化和兴奋性增加都被钴离子和锰离子所阻断。

  4. 发现低浓度的谷氨酸会使嗅神经产生显著的去极化。尽管γ-氨基丁酸(GABA)也会引起嗅神经的去极化,但GABA拮抗剂苦味毒却不会降低刺激诱发的嗅神经去极化。

  5. 在嗅神经末梢区域用钾敏感电极进行记录表明,细胞外钾离子增加,其上升时间和持续时间与嗅神经去极化相同。钴离子和锰离子阻断了钾离子的增加以及嗅神经去极化,而不影响突触前动作电位。

  6. 由次级嗅觉中继神经元的顺向突触兴奋所产生的局部记录的细胞外电流,在短时间间隔内会被成对刺激所阻断,并且在嗅神经去极化期间会减小。这表明嗅神经末梢释放的递质减少。

  7. 讨论了钾离子和/或一种神经递质在产生嗅神经去极化和抑制过程中可能发挥的作用。

相似文献

1
Primary afferent depolarization in the in vitro frog olfactory bulb.
J Physiol. 1981 Sep;318:375-84. doi: 10.1113/jphysiol.1981.sp013871.
2
Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells.
J Neurophysiol. 2006 Apr;95(4):2233-41. doi: 10.1152/jn.01150.2005. Epub 2006 Jan 4.
5
Selective neuroinhibitory effects of taurine in slices of rat main olfactory bulb.
Neuroscience. 2004;124(4):929-44. doi: 10.1016/j.neuroscience.2003.12.032.
6
Amino acids and presynaptic inhibition in the rat cuneate nucleus.
J Physiol. 1971 Dec;219(3):689-708. doi: 10.1113/jphysiol.1971.sp009683.
8
Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
J Physiol. 1979 May;290(2):113-27. doi: 10.1113/jphysiol.1979.sp012763.
10
Presynaptic inhibition of primary olfactory afferents mediated by different mechanisms in lobster and turtle.
J Neurosci. 1999 Oct 15;19(20):8808-17. doi: 10.1523/JNEUROSCI.19-20-08808.1999.

引用本文的文献

1
Detecting activity in olfactory bulb glomeruli with astrocyte recording.
J Neurosci. 2005 Mar 16;25(11):2917-24. doi: 10.1523/JNEUROSCI.5042-04.2005.
2
Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging.
Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9097-102. doi: 10.1073/pnas.0400438101. Epub 2004 Jun 7.
4
Functional organization of rat olfactory bulb glomeruli revealed by optical imaging.
J Neurosci. 1998 Apr 1;18(7):2602-12. doi: 10.1523/JNEUROSCI.18-07-02602.1998.
5
The bilateral bulbar projections of the primary olfactory neurons in the frog.
Exp Brain Res. 1992;89(1):93-104. doi: 10.1007/BF00229005.

本文引用的文献

1
Olfactory bulb potentials induced by electrical stimulation of the nasal mucosa in the frog.
Acta Physiol Scand. 1959 Nov 15;47:160-72. doi: 10.1111/j.1748-1716.1960.tb00066.x.
2
Presynaptic inhibition at the crayfish neuromuscular junction.
J Physiol. 1961 Mar;155(3):543-62. doi: 10.1113/jphysiol.1961.sp006646.
3
Excitability changes in afferent fibre terminations and their relation to slow potentials.
J Physiol. 1958 Jun 18;142(1):1-21. doi: 10.1113/jphysiol.1958.sp005997.
4
The contribution by glial cells to surface recordings from the optic nerve of an amphibian.
J Physiol. 1970 Oct;210(3):565-80. doi: 10.1113/jphysiol.1970.sp009227.
5
Olfactory nerves and their excitatory action in the olfactory bulb.
Exp Brain Res. 1972;14(2):185-97. doi: 10.1007/BF00234798.
7
Presynaptic inhibition in the vertebrate central nervous system.
Ergeb Physiol. 1971;63:20-101. doi: 10.1007/BFb0047741.
8
Relation of glomerular neuronal activity to glomerular transmission attenuation.
Brain Res. 1974 Jan 4;65(1):91-107. doi: 10.1016/0006-8993(74)90338-2.
9
The neuropil of the glomeruli of the olfactory bulb.
J Cell Sci. 1971 Sep;9(2):347-77. doi: 10.1242/jcs.9.2.347.
10
Possible presynaptic inhibition in rat olfactory cortex.
J Physiol. 1976 Sep;260(2):475-86. doi: 10.1113/jphysiol.1976.sp011526.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验