Suppr超能文献

刺激皮肤和脊髓腹外侧柱引起青蛙脊髓细胞外钾离子蓄积。

Extracellular potassium accumulation in the frog spinal cord induced by stimulation of the skin and ventrolateral columns.

作者信息

Czéh G, Kríz N, Syková E

出版信息

J Physiol. 1981 Nov;320:57-72. doi: 10.1113/jphysiol.1981.sp013934.

Abstract
  1. Changes in extracellular K(+) concentration (DeltaK), dorsal root potentials (DRPs) and single unit activity were studied in the frog spinal cord in response to stimulation of the skin of the hindlimb by touch, pressure, hot water (heat), single electrical pulses and to stimulation of the ventrolateral columns (LC).2. Single electrical pulses, various types of adequate stimulation applied to the skin of the hind limb for 1-2 s as well as single volleys of LC led to a DeltaK of up to 0.2 mmol.l(-1). Stimuli which evoked larger DeltaK also produced larger DRPs in the same frog preparation.3. The briefest heat stimuli, which lasted about 1-2 s, led to more prolonged activity in dorsal horn interneurones than did a single volley or a single tactile stimulus and the DeltaK were longer and larger and had a slower rise time.4. The ;slow' second component of dorsal root depolarization (presumably mediated by K(+)) was observed after electrical and heat stimulation of the skin on the hind limb corresponding to the time course of DeltaK.5. The maximum DeltaK induced by nociceptive stimulation occurred in the grey matter of the dorsal horn at a depth of 300-600 mum from the dorsal surface. The maximum response to single stimuli applied to the skin occurred at a depth of 400-800 mum, while that evoked by LC stimulation in the ventral horn at a depth of 1000-1400 mum.6. Repetitive and more prolonged nociceptive stimulation (5-20 s) produced a DeltaK of up to 1 mmol.l(-1). The DeltaK in response to repetitive tactile stimulation does not exceed 0.2 mmol.l(-1). Repetitive stimulation (100 Hz) of LC fibres led to an increase in K of up to 9-10 mmol.l(-1) in the ventral horn; this level was similar to that achieved in the intermediate region by electrical repetitive stimulation of the skin (100 Hz). Tetanic stimulation of the ventral root led to a DeltaK of only about 0.05 mmol.l(-1) at a depth of 500-700 mum and no measurable DeltaK within the ventral horn.7. Spontaneous DeltaK associated with spontaneous DRPs and VRPs were observed during the decay phase of DeltaK at various intervals from several seconds to one minute after nociceptive or electrical stimulation of the skin, suggesting the occurrence of a longlasting increase in excitability.8. The depolarization of dorsal root fibres evoked by nociceptive stimulation, tetanic stimulation of the LC and single or tetanic stimulation of the skin was followed by a dorsal root hyperpolarization. Its size, as well as that of DeltaK, was dependent on the frequency and duration of stimulation and its time course correlated with the dissipation of DeltaK when stimulation was discontinued.9. It is suggested that the extracellular K(+) accumulation could, under physiological conditions, contribute to the modulation of spinal cord transmission, acting both pre-and post-synaptically. Low levels of increased K were associated with facilitation of impulse transmission while higher increases could result in its inhibition.
摘要
  1. 研究了青蛙脊髓中细胞外钾离子浓度变化(Δ[K]e)、背根电位(DRP)和单单位活动,以响应通过触摸、压力、热水(热)、单个电脉冲对后肢皮肤的刺激以及对腹外侧柱(LC)的刺激。

  2. 单个电脉冲、对后肢皮肤施加1 - 2秒的各种类型适宜刺激以及LC的单个群峰电位导致Δ[K]e高达0.2 mmol·l⁻¹。在同一青蛙标本中,引起较大Δ[K]e的刺激也产生较大的DRP。

  3. 持续约1 - 2秒的最短热刺激比单个群峰电位或单个触觉刺激在背角中间神经元中导致更长时间的活动,且Δ[K]e更长、更大,上升时间更慢。

  4. 在对后肢皮肤进行电刺激和热刺激后,观察到背根去极化的“慢”第二成分(可能由钾离子介导),其与Δ[K]e的时间进程相对应。

  5. 伤害性刺激诱导的最大Δ[K]e出现在背角灰质中,距背表面深度为300 - 600μm处。对施加于皮肤的单个刺激的最大反应出现在深度为400 - 800μm处,而LC刺激在腹角中引起的最大反应出现在深度为1000 - 1400μm处。

  6. 重复且持续时间更长的伤害性刺激(5 - 20秒)产生的Δ[K]e高达1 mmol·l⁻¹。对重复触觉刺激的Δ[K]e不超过0.2 mmol·l⁻¹。对LC纤维的重复刺激(100 Hz)导致腹角中[K]e增加高达9 - 10 mmol·l⁻¹;该水平与通过对皮肤进行电重复刺激(100 Hz)在中间区域达到的水平相似。对腹根的强直刺激在深度为500 - 700μm处导致的Δ[K]e仅约为0.05 mmol·l⁻¹,在腹角内未检测到可测量的Δ[K]e。

  7. 在对皮肤进行伤害性或电刺激后几秒到一分钟的不同间隔期间,在Δ[K]e的衰减阶段观察到与自发DRP和VRP相关的自发Δ[K]e,表明兴奋性出现持久增加。

  8. 伤害性刺激、LC的强直刺激以及皮肤的单个或强直刺激引起的背根纤维去极化之后是背根超极化。其大小以及Δ[K]e的大小取决于刺激的频率和持续时间,并且当刺激停止时,其时间进程与Δ[K]e的消散相关。

  9. 有人提出,在生理条件下,细胞外钾离子积累可能有助于脊髓传递的调制,在突触前和突触后均起作用。[K]e的低水平增加与冲动传递的易化相关,而更高的增加可能导致其抑制。

相似文献

3
Potassium accumulation in the frog spinal cord induced by nociceptive stimulation of the skin.
Neurosci Lett. 1980 May 1;17(3):253-8. doi: 10.1016/0304-3940(80)90032-4.
4
Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
J Physiol. 1979 May;290(2):113-27. doi: 10.1113/jphysiol.1979.sp012763.
5
7
Activity-related extracellular potassium transients in the neonatal rat spinal cord: an in vitro study.
Neuroscience. 1988 Jun;25(3):983-95. doi: 10.1016/0306-4522(88)90051-6.
10
The organization of primary afferent depolarization in the isolated spinal cord of the frog.
J Physiol. 1973 Mar;229(2):471-93. doi: 10.1113/jphysiol.1973.sp010148.

引用本文的文献

2
Urothelial Tight Junction Barrier Dysfunction Sensitizes Bladder Afferents.
eNeuro. 2017 May 24;4(3). doi: 10.1523/ENEURO.0381-16.2017. eCollection 2017 May-Jun.
3
Increased urothelial paracellular transport promotes cystitis.
Am J Physiol Renal Physiol. 2015 Dec 15;309(12):F1070-81. doi: 10.1152/ajprenal.00200.2015. Epub 2015 Sep 30.
4
Asynchronous respiratory activity of the diaphragm during spontaneous breathing in the lamb.
J Physiol. 1982 Jun;327:377-91. doi: 10.1113/jphysiol.1982.sp014237.

本文引用的文献

1
The interpretation of potential changes in the spinal cord.
J Physiol. 1938 Apr 14;92(3):276-321. doi: 10.1113/jphysiol.1938.sp003603.
2
Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys.
J Physiol. 1961 Nov;159(1):147-66. doi: 10.1113/jphysiol.1961.sp006798.
3
Neurones activated from nociceptors in the spinal cord of the frog.
Neurosci Lett. 1980 Mar;16(3):257-62. doi: 10.1016/0304-3940(80)90007-5.
4
Hyperpolarization of frog primary afferent fibres caused by activation of a sodium pump.
J Physiol. 1980 May;302:297-309. doi: 10.1113/jphysiol.1980.sp013243.
7
Extracellular potassium accumulation and transmission in frog spinal cord.
Neuroscience. 1980;5(8):1421-8. doi: 10.1016/0306-4522(80)90003-2.
8
Pain mechanisms: a new theory.
Science. 1965 Nov 19;150(3699):971-9. doi: 10.1126/science.150.3699.971.
10
Potassium, sustained focal potential shifts, and dorsal root potentials of the mammalian spinal cord.
Brain Res. 1974 Mar 29;69(1):153-7. doi: 10.1016/0006-8993(74)90382-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验