Suppr超能文献

猫脊髓中神经元活动所诱导的细胞外钾离子浓度变化。

Changes of extracellular potassium concentration induced by neuronal activity in the sinal cord of the cat.

作者信息

Kríz N, Syková E, Ujec E, Vyklický L

出版信息

J Physiol. 1974 Apr;238(1):1-15. doi: 10.1113/jphysiol.1974.sp010507.

Abstract
  1. Changes of extracellular K(+) concentration, K, arising in the spinal cord of the cat in response to an afferent stimulation were studied by means of K(+)-specific micro-electrodes.2. In the most active areas of the spinal cord a single volley in a large afferent input like the common peroneal nerve or the posterior tibial nerve produced a transient increase in K of 0.05-0.1 mM, which reached its peak in 0.2-0.3 sec and it declined in about 3 sec.3. Much higher increases in K were found during repetitive stimulation of an afferent input. The highest increase (by 3 mM) was at 100 Hz, but even at 1 Hz a significant increase of 0.25 mM was observed. Equilibration of accumulated K(+) was slow with a time constant of about 6 sec, which is much longer than could be expected for the same process in free solution.4. A characteristic distribution of increased K was found in the spinal cord in response to 100 Hz afferent stimulation. The highest increase of 3 mM was found in and around the intermediate nucleus, but at depths between 0.9-1.8 mm the K increase exceeded 1 mM.5. In the ventral horns afferent stimulation (100 Hz) increased K by 0.25 mM, while the same stimulation of the ventral root resulted in a K increase of less than 0.05 mM.6. The consequences of K(e) (+) accumulation after neuronal discharge are discussed in respect to its possible role in the depolarization of primary afferent terminals.
摘要
  1. 采用钾特异性微电极研究了猫脊髓中因传入刺激而引起的细胞外钾离子浓度(K)的变化。

  2. 在脊髓最活跃的区域,像腓总神经或胫后神经这样的大传入输入中的单个冲动会使K瞬间增加0.05 - 0.1 mM,在0.2 - 0.3秒达到峰值,并在约3秒内下降。

  3. 在传入输入的重复刺激期间发现K有更高的增加。最高增加量(达3 mM)出现在100 Hz时,但即使在1 Hz时也观察到显著增加0.25 mM。积累的钾离子的平衡很慢,时间常数约为6秒,这比在自由溶液中同一过程预期的要长得多。

  4. 在脊髓中发现了对100 Hz传入刺激的K增加的特征性分布。在中间核及其周围发现最高增加量为3 mM,但在0.9 - 1.8 mm深度处K增加超过1 mM。

  5. 在腹角,传入刺激(100 Hz)使K增加0.25 mM,而对腹根进行相同刺激导致K增加小于0.05 mM。

  6. 讨论了神经元放电后钾离子(K(e) (+))积累的后果,涉及其在初级传入终末去极化中可能的作用。

相似文献

3
Extracellular diffusion parameters in spinal cord and filum terminale of the frog.
J Neurosci Res. 2000 Nov 15;62(4):530-8. doi: 10.1002/1097-4547(20001115)62:4<530::AID-JNR7>3.0.CO;2-7.
4
8
Functions of primary afferents and responses of extracellular K+ during spinal epileptiform seizures.
Electroencephalogr Clin Neurophysiol. 1976 Sep;41(3):253-67. doi: 10.1016/0013-4694(76)90118-8.
9
The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex.
Brain Res. 1978 Aug 4;151(2):291-306. doi: 10.1016/0006-8993(78)90886-7.

引用本文的文献

1
Pericytes and the Control of Blood Flow in Brain and Heart.
Annu Rev Physiol. 2023 Feb 10;85:137-164. doi: 10.1146/annurev-physiol-031522-034807.
2
Rapid adaptation to elevated extracellular potassium in the pyloric circuit of the crab, .
J Neurophysiol. 2020 May 1;123(5):2075-2089. doi: 10.1152/jn.00135.2020. Epub 2020 Apr 22.
3
Introduction: Special Issue in Honor of Eva Syková.
Neurochem Res. 2020 Jan;45(1):1-4. doi: 10.1007/s11064-019-02924-z. Epub 2019 Dec 20.
5
The logic of ionic homeostasis: Cations are for voltage, but not for volume.
PLoS Comput Biol. 2019 Mar 14;15(3):e1006894. doi: 10.1371/journal.pcbi.1006894. eCollection 2019 Mar.
6
Does trans-spinal and local DC polarization affect presynaptic inhibition and post-activation depression?
J Physiol. 2017 Mar 1;595(5):1743-1761. doi: 10.1113/JP272902. Epub 2017 Jan 17.
8
Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations.
J Physiol. 2015 Feb 15;593(4):947-66. doi: 10.1113/jphysiol.2014.285940. Epub 2014 Dec 23.
9
High frequency stimulation extends the refractory period and generates axonal block in the rat hippocampus.
Brain Stimul. 2014 Sep-Oct;7(5):680-9. doi: 10.1016/j.brs.2014.03.011. Epub 2014 Apr 4.

本文引用的文献

1
The interpretation of potential changes in the spinal cord.
J Physiol. 1938 Apr 14;92(3):276-321. doi: 10.1113/jphysiol.1938.sp003603.
2
The sodium and potassium content of cephalopod nerve fibers.
J Physiol. 1951 Jun;114(1-2):151-82. doi: 10.1113/jphysiol.1951.sp004609.
3
The ionic movements during nervous activity.
J Physiol. 1951 Jun;114(1-2):119-50. doi: 10.1113/jphysiol.1951.sp004608.
4
Reduction of transmitter output by depolarization.
Nature. 1962 Mar 31;193:1294-5. doi: 10.1038/1931294a0.
5
ALTERED NEURON POPULATION IN L7 SEGMENT OF DOGS WITH EXPERIMENTAL HIND-LIMB RIGIDITY.
Am J Physiol. 1963 Sep;205:606-16. doi: 10.1152/ajplegacy.1963.205.3.606.
7
Electrical changes in pre- and postsynaptic axons of the giant synapse of Loligo.
J Gen Physiol. 1962 Jul;45(6):1181-93. doi: 10.1085/jgp.45.6.1181.
8
A morphological basis for pre-synaptic inhibition?
Nature. 1962 Jan 6;193:82-3. doi: 10.1038/193082a0.
9
Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys.
J Physiol. 1961 Nov;159(1):147-66. doi: 10.1113/jphysiol.1961.sp006798.
10
Types of neurone in and around the intermediate nucleus of the lumbosacral cord.
J Physiol. 1960 Nov;154(1):89-114. doi: 10.1113/jphysiol.1960.sp006566.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验