Suppr超能文献

Specific glycine uptake by identified neurons of Aplysia californica. I. Autoradiography.

作者信息

Price C H, Coggeshall R E, McAdoo D

出版信息

Brain Res. 1978 Oct 6;154(1):25-40. doi: 10.1016/0006-8993(78)91048-x.

Abstract

The identified giant neurons R3-R14 in the Aplysia parietovisceral ganglion (PVG) have a rapid, Na+-dependent and Hg2+-sensitive uptake system for glycine not found in neighboring neurons. In autoradiographs of PVG incubated in [3H]glycine (glutaraldehyde fix), the cytoplasms of R3-R14 have 3--4 times more silver grains (No./100 sq.micrometer) than other neurons. The glycine uptake system in R3-R14 is selective (alanine, serine, leucine, and proline are taken up equally by all neurons) and is unaffected by reserpine and anisomycin. Neurons R3-R14 contain 2 times less label when ganglia are fixed in formaldehyde than when glutaraldehyde is used as a fixative. Because formaldehyde fixes free amino acids poorly, much of the glycine taken up by R3-R14 is, therefore, not incorporated into protein. In autoradiographs of PVG incubated in [3H]glycine, silver grains are distributed randomly throughout the cytoplasm and nucleus of R3-R14; no association of the grains with the dense core granules characteristic of these neurons7 or other cellular components was found. In contrast, grains in the neurosecretory "bag cells" of the PVG were clustered in numerous discrete areas of the cytoplasm (Golgi complex areas) and the nucleus was only sparsely labeled. The existence of a rapid and selective glycine uptake system in R3-R14, together with their high endogenous glycine concentrations17, suggests that glycine may be a neurotransmitter in these neurons.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验