Suppr超能文献

线粒体内以及细胞核与线粒体之间的远程控制电路。I. 抑制因子的方法学与现象学

Long range control circuits within mitochondria and between nucleus and mitochondria. I. Methodology and phenomenology of suppressors.

作者信息

Dujardin G, Pajot P, Groudinsky O, Slonimski P P

出版信息

Mol Gen Genet. 1980;179(3):469-82. doi: 10.1007/BF00271736.

Abstract

To uncover the functional circuitry both within the mitochondrial genome and between the mitochondrial and the nuclear genome, we have developed a general method for selecting and characterizing genetically suppressor mutations that restore the respiratory capacity of mit- mitochondrial mutants. Several hundreds of pseudo-wild type revertants due to a second unlinked mutation which suppresses a target mit- mutation were isolated. The suppressor mutations were found located either in the nuclear (abbreviated NAM for 'nuclear accommodation of mitochondria') or in the mitochondrial genome (abbreviated MIM for 'mitochondrial-mitochondrial interaction'). The specificity of action of various suppressors upon some 250 different mit- mutations located in several genes was tested. According to this specificity of action, suppressors were subdivided into two major classes: allele specific or gene specific suppressors. Because the cob-box mitochondrial gene has a mosaic organization, we were able to find a novel third class of extragenic suppressors specific for mit- mutations within the introns of this gene. Four examples of suppressors showing various specificities of action illustrate our approach. (1) a nuclear gene controlling specific alleles of different mitochondrial genes; (2) a nuclear gene controlling selectively one intron of a split mitochondrial gene; (3) a mitochondrial gene controlling specific alleles of different mitochondrial genes; (4) a region in one complex mitochondrial gene which controls selectively one intron of another split mitochondrial gene. Different mechanisms of suppression are discussed stressing the alleviation of splicing deficiencies of intron mutations.

摘要

为了揭示线粒体基因组内部以及线粒体与核基因组之间的功能电路,我们开发了一种通用方法,用于选择和表征能够恢复线粒体突变体呼吸能力的基因抑制突变。通过第二次非连锁突变抑制目标线粒体突变,分离出了数百个假野生型回复体。发现抑制突变位于核基因组(缩写为NAM,即“线粒体的核适应”)或线粒体基因组(缩写为MIM,即“线粒体-线粒体相互作用”)中。测试了各种抑制因子对位于几个基因中的约250种不同线粒体突变的作用特异性。根据这种作用特异性,抑制因子被细分为两大类:等位基因特异性或基因特异性抑制因子。由于细胞色素b-box线粒体基因具有嵌合结构,我们能够找到一类新的基因外抑制因子,它们对该基因内含子中的线粒体突变具有特异性。展示了四种具有不同作用特异性的抑制因子实例,以说明我们的方法。(1)一个控制不同线粒体基因特定等位基因的核基因;(2)一个选择性控制一个断裂线粒体基因一个内含子的核基因;(3)一个控制不同线粒体基因特定等位基因的线粒体基因;(4)一个复杂线粒体基因中的一个区域,它选择性控制另一个断裂线粒体基因的一个内含子。讨论了不同的抑制机制,重点强调了内含子突变剪接缺陷的缓解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验