Howald H
Int J Sports Med. 1982 Feb;3(1):1-12. doi: 10.1055/s-2008-1026053.
In addition to the histochemical ATPase staining techniques, immunohistochemistry and two-dimensional gel electrophoresis lead to a better understanding of the molecular structure of the contractile proteins actin, myosin, tropomyosin, and troponin in the different fiber types of human skeletal muscle. A great plasticity enables muscle fibers to adapt to different genetic and environmental influences not only on the level of cellular ultrastructure and metabolic function, but also on the molecular level of the contractile proteins. Fiber type transformation is possible with cross-innervation and specific electrical stimulation. Prolonged and intense endurance training probably also transforms type II fibers into type I fibers, whereas with spring or strength training changes in the different fiber types are restricted to ultrastructure (e.g., myofibrillar to mitochondrial volume ration) and metabolic function. The fiber type distribution pattern in top athletes seems to be determined by both hereditary and environmental factors.
除了组织化学ATP酶染色技术外,免疫组织化学和二维凝胶电泳有助于更好地理解人类骨骼肌不同纤维类型中收缩蛋白肌动蛋白、肌球蛋白、原肌球蛋白和肌钙蛋白的分子结构。巨大的可塑性使肌纤维不仅能在细胞超微结构和代谢功能水平上,而且能在收缩蛋白的分子水平上适应不同的遗传和环境影响。通过交叉神经支配和特定的电刺激,纤维类型转变是可能的。长期而高强度的耐力训练可能也会将II型纤维转变为I型纤维,而在进行短跑或力量训练时,不同纤维类型的变化仅限于超微结构(如肌原纤维与线粒体体积比)和代谢功能。顶级运动员的纤维类型分布模式似乎由遗传和环境因素共同决定。