Kuo L C, Lipscomb W N, Kantrowitz E R
Proc Natl Acad Sci U S A. 1982 Apr;79(7):2250-4. doi: 10.1073/pnas.79.7.2250.
The steady-state reaction of ornithine transcarbamoylase (ornithine carbamoyltransferase, carbamoyl phosphate:L-ornithine carbamoyltransferase, EC 2.1.3.3) purified from the argI gene product of Escherichia coli strain K-12 exhibits Michaelis-Menten kinetics over an extended range of concentration for both L-ornithine and carbamoyl phosphate. In the presence of Zn2+, however, the saturation curve of L-ornithine becomes sigmoidal, revealing positive cooperativity for this anabolic enzyme. The kinetic data give a limiting Hill coefficient of 2.7 for this substrate at 0.3 mM Zn2+. The allosteric effect of Zn2+ on the enzyme is not altered by the concentration of carbamoyl phosphate, and the saturation curve of carbamoyl phosphate remains hyperbolic in the presence of the metal ion. At fixed substrate concentrations, initial velocity data obtained at 0.-0.3 mM Zn2+ indicate cooperative binding of the metal ion to ornithine transcarbamoylase; a Hill coefficient of 1.7 +/- 0.1 is found that is independent of the level of L-ornithine. These results suggest competitive and exclusive binding to the enzyme between L-ornithine and Zn2+ with conformational changes induced in the subunits of the enzyme only by the metal ligand. Neither Co2+ nor Cu2+ exerts an effect on the kinetic behavior of the enzyme. This finding reveals not only specific allosteric control of ornithine transcarbamoylase by Zn2+ but also the possibility of an interlocking metabolic regulation between the urea cycle and the pathway for pyrimidine biosynthesis.
从大肠杆菌K - 12菌株的argI基因产物中纯化得到的鸟氨酸转氨甲酰酶(鸟氨酸氨甲酰转移酶,氨甲酰磷酸:L - 鸟氨酸氨甲酰转移酶,EC 2.1.3.3)的稳态反应,在L - 鸟氨酸和氨甲酰磷酸浓度的扩展范围内呈现米氏动力学。然而,在Zn2 +存在的情况下,L - 鸟氨酸的饱和曲线变为S形,表明这种合成代谢酶具有正协同性。动力学数据表明,在0.3 mM Zn2 +时,该底物的极限希尔系数为2.7。Zn2 +对该酶的变构效应不受氨甲酰磷酸浓度的影响,在金属离子存在下,氨甲酰磷酸的饱和曲线仍为双曲线。在固定底物浓度下,在0 - 0.3 mM Zn2 +下获得的初始速度数据表明金属离子与鸟氨酸转氨甲酰酶存在协同结合;发现希尔系数为1.7±0.1,且与L - 鸟氨酸水平无关。这些结果表明L - 鸟氨酸和Zn2 +之间对该酶存在竞争性和排他性结合,且只有金属配体诱导酶亚基发生构象变化。Co2 +和Cu2 +均未对该酶的动力学行为产生影响。这一发现不仅揭示了Zn2 +对鸟氨酸转氨甲酰酶的特异性变构控制,还揭示了尿素循环和嘧啶生物合成途径之间联锁代谢调节的可能性。