Arterial PO2 in resting, normoxic avian lungs in not at the level of predicted for an ideal crosscurrent lung. In contrast to healthy alveolar lungs, such a reduction in efficiency of O2 exchange from optimal levels cannot be totally explained by ventilation/perfusion inequality, and the discrepancy is most likely related to diffusion resistances. The diffusing capacity of avian lungs (DLO2) will depend on: 1) stratification in the air capillaries, 2) blood-gas barrier morphology, 3) O2-Hb kinetics ( theta ), and 4) diffusive/perfusive conductance (D/ beta bQ) matching. Stratification in air capillaries, the membrane diffusing capacity, and time available in pulmonary capillaries for arterialization do not appear to be limiting at rest. D/ beta bQ inequality is expected in normoxic avian lungs but predictive models show that this should not limit O2 uptake. However, these resistances may interact in crosscurrent lungs or there may be other unknown diffusion limitations (e.g., theta ) to reduce PaO2 in birds. Recent morphologic evidence suggests DLO2 may increase in birds during exercise and V/Q and D/ beta bQ inequality would be expected to have less of an effect during hypoxia. Together, these factors may reconcile the relatively low PaO2 in resting birds at sea level and their ability to exercise at high altitudes.
在静息、常氧状态下,鸟类肺部的动脉血氧分压未达到理想交叉流肺所预测的水平。与健康的肺泡肺不同,从最佳水平降低的氧气交换效率不能完全用通气/灌注不均等来解释,这种差异很可能与扩散阻力有关。鸟类肺部的扩散能力(DLO2)将取决于:1)气毛细血管中的分层;2)血气屏障形态;3)氧-血红蛋白动力学(θ);4)扩散/灌注传导率(D/βbQ)匹配。气毛细血管中的分层、膜扩散能力以及肺毛细血管中用于动脉化的可用时间在静息时似乎并非限制因素。常氧状态下的鸟类肺部预计存在D/βbQ不均等,但预测模型表明这不应限制氧气摄取。然而,这些阻力可能在交叉流肺中相互作用,或者可能存在其他未知的扩散限制(如θ),从而降低鸟类的动脉血氧分压。最近的形态学证据表明,鸟类在运动过程中DLO2可能会增加,并且预计在低氧期间通气/血流比值(V/Q)和D/βbQ不均等的影响会较小。这些因素共同作用,可能解释了海平面静息鸟类相对较低的动脉血氧分压以及它们在高海拔地区进行运动的能力。