Maina John N
School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa.
Biol Rev Camb Philos Soc. 2006 Nov;81(4):545-79. doi: 10.1017/S1464793106007111. Epub 2006 Oct 12.
Among the air-breathing vertebrates, the avian respiratory apparatus, the lung-air sac system, is the most structurally complex and functionally efficient. After intricate morphogenesis, elaborate pulmonary vascular and airway (bronchial) architectures are formed. The crosscurrent, countercurrent, and multicapillary serial arterialization systems represent outstanding operational designs. The arrangement between the conduits of air and blood allows the respiratory media to be transported optimally in adequate measures and rates and to be exposed to each other over an extensive respiratory surface while separated by an extremely thin blood-gas barrier. As a consequence, the diffusing capacity (conductance) of the avian lung for oxygen is remarkably efficient. The foremost adaptive refinements are: (1) rigidity of the lung which allows intense subdivision of the exchange tissue (parenchyma) leading to formation of very small terminal respiratory units and consequently a vast respiratory surface; (2) a thin blood-gas barrier enabled by confinement of the pneumocytes (especially the type II cells) and the connective tissue elements to the atria and infundibulae, i.e. away from the respiratory surface of the air capillaries; (3) physical separation (uncoupling) of the lung (the gas exchanger) from the air sacs (the mechanical ventilators), permitting continuous and unidirectional ventilation of the lung. Among others, these features have created an incredibly efficient gas exchanger that supports the highly aerobic lifestyles and great metabolic capacities characteristic of birds. Interestingly, despite remarkable morphological heterogeneity in the gas exchangers of extant vertebrates at maturity, the processes involved in their formation and development are very similar. Transformation of one lung type to another is clearly conceivable, especially at lower levels of specialization. The crocodilian (reptilian) multicameral lung type represents a Bauplan from which the respiratory organs of nonavian theropod dinosaurs and the lung-air sac system of birds appear to have evolved. However, many fundamental aspects of the evolution, development, and even the structure and function of the avian respiratory system still remain uncertain.
在呼吸空气的脊椎动物中,鸟类的呼吸器官——肺-气囊系统,在结构上最为复杂,功能上也最为高效。经过复杂的形态发生过程,形成了精细的肺血管和气道(支气管)结构。交叉流、逆流和多毛细血管串联动脉化系统代表了卓越的运作设计。空气和血液管道之间的排列方式使得呼吸介质能够以适当的量和速率得到最佳运输,并在一个广阔的呼吸表面上相互接触,同时被极薄的气血屏障分隔开。因此,鸟类肺部对氧气的扩散能力(传导率)非常高效。最重要的适应性优化包括:(1)肺的刚性,这使得交换组织(实质)能够强烈细分,从而形成非常小的终末呼吸单位,进而形成巨大的呼吸表面;(2)通过将肺细胞(尤其是II型细胞)和结缔组织成分限制在心房和漏斗部,即远离气毛细血管的呼吸表面,实现了薄的气血屏障;(3)肺(气体交换器)与气囊(机械通气器)在物理上分离(解耦),从而使肺能够持续单向通气。这些特征共同造就了一个极其高效的气体交换器,支持着鸟类高度有氧的生活方式和强大的代谢能力。有趣的是,尽管现存脊椎动物成熟时气体交换器在形态上存在显著异质性,但它们形成和发育过程却非常相似。一种肺类型向另一种肺类型的转变显然是可以想象的,尤其是在较低的特化水平上。鳄鱼(爬行类)的多腔肺类型代表了一种基本模式,非鸟类兽脚亚目恐龙的呼吸器官和鸟类的肺-气囊系统似乎都是从这种模式进化而来的。然而,鸟类呼吸系统的进化、发育,甚至结构和功能的许多基本方面仍然不确定。