Denzlinger C, Hertting G, Jackisch R
J Neurochem. 1982 Aug;39(2):499-506. doi: 10.1111/j.1471-4159.1982.tb03972.x.
45Ca2+ uptake measurements were performed on intact and osmotically lysed synaptosomes from rat brain to study the possible influence of prostaglandins (PGs) on Ca2+ movements into and within the nerve endings. The K+-induced 45Ca2+ uptake of intact synaptosomes was not influenced by several inhibitors of PG synthesis. 45Ca2+ uptake in lysed synaptosomal preparations was promoted by ATP and seemed to be largely attributable to mitochondria, as it was inhibited by mitochondrial poisons. This Ca2+ uptake was strongly reduced by PG synthesis inhibitors but also by PG precursor fatty acids. Both PG synthesis inhibitors and precursors, according to their relative efficacy in blocking Ca2+ uptake, were able to induce Ca2+ efflux from preloaded intrasynaptosomal organelles. The PGs E2, F2 alpha, D2, and thromboxane B2 were without effect on 45Ca2+ uptake in lysed synaptosomal preparations. On the basis of our results it does not seem likely that PGs influence Ca2+ availability by modulating Ca2+ fluxes into or within the nerve endings. The observed inhibitory effects of PG synthesis inhibitors and precursors on the intrasynaptosomal Ca2+ uptake might be due to unspecific impairment of mitochondrial functions.