Saito T, Oki F
Tohoku J Exp Med. 1982 Aug;137(4):401-8. doi: 10.1620/tjem.137.401.
In previous articles we proposed a finite deformation theory of the urinary bladder. The present paper is the third article in a series of these works. Our aim is to study more carefully the strain-energy density function W of the urinary bladder, because the determination of this function W is one of the central problems in the finite deformation theory of a hyperelastic continuum. We found that, except for an infinitesimally small deformation region where Hook's law is valid, the third term in W of the Valanis-Landel type takes much smaller values than the other two terms, so that this term can be neglected. Hence, the formula giving the true stress t1 for the uniaxial extension test is reduced to the same one as the true stress t for the equal-biaxial extension test. This may be useful in practical applications.
在之前的文章中,我们提出了膀胱的有限变形理论。本文是这一系列工作中的第三篇文章。我们的目的是更仔细地研究膀胱的应变能密度函数W,因为确定这个函数W是超弹性连续体有限变形理论中的核心问题之一。我们发现,除了胡克定律有效的无限小变形区域外,瓦拉尼斯 - 兰德尔型W中的第三项比其他两项的值小得多,因此该项可以忽略不计。因此,给出单轴拉伸试验真实应力t1的公式简化为与等双轴拉伸试验真实应力t相同的公式。这在实际应用中可能会有用。