Suppr超能文献

The permeability alteration of brain and spinal cord vasculature to horseradish peroxidase during experimental decompression sickness as compared to the alteration in permeability induced by hyperosmolar solution.

作者信息

Lehtosalo J, Panula P, Laitinen L A

出版信息

Acta Neuropathol. 1982;57(2-3):179-87. doi: 10.1007/BF00685387.

Abstract

The permeability of microvasculature in the cerebral cortex, neostriatum, and spinal cord to i.v. injected horseradish peroxidase (HRP) has been investigated in rats following experimental compression to 6.1 bars (abs.) air for 90 min, and subsequent decompression to the ambient pressure in 1 min. For comparison, 1 ml of 2.0 M urea was injected into the right common carotid artery of rats during 15 s. After exposure to compression-decompression, under the light microscope focal leaky areas were found in all the regions examined. The leakage was most prominent in the grey matter of the spinal cord, and the cerebral cortex. In decompressed rats, arterioles were most often the site of peroxidase extravasation, whereas extravasation of HRP was less frequently displayed by capillaries and venules. In urea-treated rats, capillaries and venules frequently displayed extravasation of HRP as well. Parenchymal cells accumulated the trace adjacent to the leaky areas. Under the electron microscope, the extravasation of HRP was associated with peroxidase-containing pleomorphic vesicular structures in the endothelium, both in decompressed and urea-injected rats. Moreover, in contrast to decompressed rats, the junctions between endothelial cells were penetrated by the trace in urea-treated rats. Accordingly, the results indicate that during decompression sickness the pathway for the extravasation of proteins is through vesicular transfer, whereas the injection of hyperosmolar urea induces extravasation, both through vesicular transfer and junctions between the endothelial cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验