Suppr超能文献

有鞭毛的外共生细菌推动真核细胞运动。

Flagellated ectosymbiotic bacteria propel a eucaryotic cell.

作者信息

Tamm S L

出版信息

J Cell Biol. 1982 Sep;94(3):697-709. doi: 10.1083/jcb.94.3.697.

Abstract

A devescovinid flagellate from termites exhibits rapid gliding movements only when in close contact with other cells or with a substrate. Locomotion is powered not by the cell's own flagella nor by its remarkable rotary axostyle, but by the flagella of thousands of rod bacteria which live on its surface. That the ectosymbiotic bacteria actually propel the protozoan was shown by the following: (a) the bacteria, which lie in specialized pockets of the host membrane, bear typical procaryotic flagella on their exposed surface; (b) gliding continues when the devescovinid's own flagella and rotary axostyle are inactivated; (c) agents which inhibit bacterial flagellar motility, but not the protozoan's motile systems, stop gliding movements; (d) isolated vesicles derived from the surface of the devescovinid rotate at speeds dependent on the number of rod bacteria still attached; (e) individual rod bacteria can move independently over the surface of compressed cells; and (f) wave propagation by the flagellar bundles of the ectosymbiotic bacteria is visualized directly by video-enhanced polarization microscopy. Proximity to solid boundaries may be required to align the flagellar bundles of adjacent bacteria in the same direction, and/or to increase their propulsive efficiency (wall effect). This motility-linked symbiosis resembles the association of locomotory spirochetes with the Australian termite flagellate Mixotricha (Cleveland, L. R., and A. V. Grimstone, 1964, Proc. R. Soc. Lond. B Biol. Sci., 159:668-686), except that in our case propulsion is provided by bacterial flagella themselves. Since bacterial flagella rotate, an additional novelty of this system is that the surface bearing the procaryotic rotary motors is turned by the eucaryotic rotary motor within.

摘要

一种来自白蚁的披发虫鞭毛虫只有在与其他细胞或底物紧密接触时才会表现出快速的滑行运动。其运动的动力并非来自细胞自身的鞭毛,也不是其显著的旋转轴柱,而是来自生活在其表面的数千根杆状细菌的鞭毛。以下几点表明了外共生细菌实际上推动了原生动物:(a)位于宿主膜特殊口袋中的细菌,在其暴露表面带有典型的原核生物鞭毛;(b)当披发虫自身的鞭毛和旋转轴柱失活时,滑行仍会继续;(c)抑制细菌鞭毛运动但不影响原生动物运动系统的试剂会使滑行运动停止;(d)从披发虫表面分离出的囊泡以取决于仍附着的杆状细菌数量的速度旋转;(e)单个杆状细菌可以在压缩细胞表面独立移动;(f)通过视频增强偏振显微镜可以直接观察到外共生细菌鞭毛束的波传播。靠近固体边界可能是为了使相邻细菌的鞭毛束沿同一方向排列,和/或提高它们的推进效率(壁效应)。这种与运动相关的共生关系类似于运动性螺旋体与澳大利亚白蚁鞭毛虫混毛虫的关联(克利夫兰,L.R.,和A.V.格里姆斯通,1964年,《伦敦皇家学会学报B:生物科学》,159:668 - 686),只是在我们的例子中推进是由细菌鞭毛自身提供的。由于细菌鞭毛会旋转,这个系统的另一个新奇之处在于,承载原核旋转马达(细菌鞭毛)的表面是由内部的真核旋转马达(轴柱)转动的。

相似文献

3
Direct evidence for fluid membranes.流体膜的直接证据。
Proc Natl Acad Sci U S A. 1974 Nov;71(11):4589-93. doi: 10.1073/pnas.71.11.4589.
9
[Mechanism of bacterial motility].[细菌运动机制]
Nihon Saikingaku Zasshi. 2019;74(2):157-165. doi: 10.3412/jsb.74.157.

引用本文的文献

1
Insights into flagellar function and mechanism from the squid-vibrio symbiosis.从鱿鱼-弧菌共生体中洞察鞭毛的功能和机制。
NPJ Biofilms Microbiomes. 2019 Oct 25;5(1):32. doi: 10.1038/s41522-019-0106-5. eCollection 2019.

本文引用的文献

1
Undulatory propulsion in small organisms.小型生物体中的波动推进。
Nature. 1951 Dec 1;168(4283):929-30. doi: 10.1038/168929a0.
2
ELECTRON MICROSCOPE STUDIES OF BACTERIAL FLAGELLA.细菌鞭毛的电子显微镜研究
J Mol Biol. 1965 Feb;11:293-313. doi: 10.1016/s0022-2836(65)80059-6.
3
Energetics of flagellar rotation in bacteria.细菌鞭毛旋转的能量学
J Mol Biol. 1980 Apr 15;138(3):541-61. doi: 10.1016/s0022-2836(80)80017-9.
9
Bacterial surface translocation: a survey and a classification.细菌表面易位:一项调查与分类
Bacteriol Rev. 1972 Dec;36(4):478-503. doi: 10.1128/br.36.4.478-503.1972.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验