Suppr超能文献

豚鼠空肠中的苯丙氨酸转运。有机溶质与钠协同转运的一般机制。

Phenylalanine transport in guinea pig jejunum. A general mechanism for organic solute and sodium cotransport.

作者信息

Alvarado F, Lherminier M

出版信息

J Physiol (Paris). 1982 Aug;78(2):131-45.

PMID:7131327
Abstract
  1. Sodium-dependent phenylalanine transport by guinea pig jejunum exhibits apparently pure K-type activation kinetics where Vmaxs is constant but KT decreases as [Na+] increases. At 0, 3 and 6 mM sodium, however, the results deviate from the expected hyperbolic kinetics and give a plateau. 2. This finding is interpreted in terms of the hypothesis that the outer face of the brush border membrane contains enough Na+ to support amino acid and Na+ cotransport at essentially maximal rates, even after preincubation of the tissues in vitro for several minutes in sodium-free buffers. 3. Sodium could move dynamically into this region from tissue stores and across the paracellular pathway. Passage of NaCl directly across the brush border also seems possible by reversal of the (neutral) Na+ and Cl- cotransport system. 4. To reconcile contradictory observations obtained in different laboratories, either with intact-epithelium preparations or with isolated brush border membrane vesicles, we include a theoretical analysis of the kinetics of organic solute and Na+ cotransport. For simplicity, this analysis is limited to cases of 1/2 stoichiometry and to neutral organic solutes such as sugars and monoamino-monocarboxylic amino acids. 5. Cotransport is explained in terms of a general, allosteric mechanism involving one site for S and another for Na+. There is no preferential order for binding, but only the ternary complex S-carrier-Na+ can translocate at quantitatively significant rates (obligatory activation kinetics). Since Na+ crosses the membrane as the free cation, under physiological conditions (inside-negative membrane potential) it will move towards its position of electrical equilibrium, hence unidirectionally. This explains why, with intact-tissue preparations, solute influx exhibits Michaelis-Menten kinetics. 6. By definition, cotransport kinetics are mixed type and involve effects on both KT and Vmaxs. Macroscopic deviations from this expected behaviour can be explained in terms of quantitative differences in the values of certain dissociation constants, all within the framework of the same general mechanism. Thus, apparently pure K-type activation kinetics will be seen when both the absolute value of the constant, K'a, and the ratio between constants, Ka/Ks, are small. The reciprocal situation will be true for systems exhibiting apparently pure V-type activation kinetics.
摘要
  1. 豚鼠空肠的钠依赖性苯丙氨酸转运表现出明显的纯K型激活动力学,其中Vmaxs恒定,但KT随[Na⁺]增加而降低。然而,在0、3和6 mM钠浓度下,结果偏离预期的双曲线动力学并出现平台期。2. 这一发现依据如下假说进行解释:即使在无钠缓冲液中对组织进行体外预孵育几分钟后,刷状缘膜的外表面仍含有足够的Na⁺,以基本上最大的速率支持氨基酸和Na⁺共转运。3. 钠可从组织储存库动态进入该区域并穿过细胞旁途径。NaCl直接穿过刷状缘似乎也有可能,这是通过(中性)Na⁺和Cl⁻共转运系统的逆转实现的。4. 为了协调在不同实验室中使用完整上皮制剂或分离的刷状缘膜囊泡获得的相互矛盾的观察结果,我们纳入了对有机溶质和Na⁺共转运动力学的理论分析。为简单起见,该分析限于1/2化学计量比的情况以及糖类和单氨基单羧酸氨基酸等中性有机溶质。5. 共转运依据一种涉及S位点和Na⁺位点的通用变构机制来解释。不存在结合的优先顺序,但只有三元复合物S-载体-Na⁺能够以具有定量意义的速率转运(强制激活动力学)。由于Na⁺以游离阳离子形式穿过膜,在生理条件下(膜电位内负),它将朝着其电平衡位置移动,因此是单向的。这解释了为什么在完整组织制剂中,溶质内流表现出米氏动力学。6. 根据定义,共转运动力学是混合型的,涉及对KT和Vmaxs的影响。从这一预期行为的宏观偏差可以依据某些解离常数数值的定量差异来解释,所有这些都在相同的通用机制框架内。因此,当常数K'a的绝对值以及常数之间的比率Ka/Ks都很小时,将观察到明显的纯K型激活动力学。对于表现出明显的纯V型激活动力学的系统,情况则相反。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验