Suppr超能文献

通过光漂白后的荧光恢复检测膜中的侧向流动性。

Lateral mobility in membranes as detected by fluorescence recovery after photobleaching.

作者信息

Yguerabide J, Schmidt J A, Yguerabide E E

出版信息

Biophys J. 1982 Oct;40(1):69-75. doi: 10.1016/S0006-3495(82)84459-7.

Abstract

The evaluation of lateral diffusion coefficients of membrane components by the technique of fluorescence recovery after photobleaching (FRAP) is often complicated by uncertainties in the values of the intensities F(O), immediately after bleaching, and F(infinity), after full recovery. These uncertainties arise from instrumental settling time immediately after bleaching and from cell, tissue, microscope, or laser beam movements at the long times required to measure F(infinity). We have developed a method for precise analysis of FRAP data that minimizes these problems. The method is based on the observation that a plot of the reciprocal function R(tau) = F(infinity)/[F(infinity)-F(tau)] is linear over a large time range when (a) the laser beam has a Gaussian profile, (b) recovery involves a single diffusion coefficient, and (c) there is no membrane flow. Moreover, the ratio of intercept to slope of the linear plot is equal to tau 1/2, the time required for the bleached fluorescence to rise to 50% of the full recovery value, F(infinity). The lateral diffusion coefficient D is related to tau 1/2 by tau 1/2 = beta w2/4D where beta is a defined parameter and w is the effective radius of the focused laser beam. These results are shown to indicate that the recovery of fluorescence F(tau) can be represented over a large range of percent bleach, and recovery time tau by the relatively simple expression F(tau) = [ F(o) + F(infinity) (tau/tau 1/2)]/[1 + tau/tau 1/2)]. FRAP data can therefore be easily evaluated by a nonlinear regression analysis with this equation or by a linear fit to the reciprocal function R(tau). It is shown that any error in F(infinity) can be easily detected in a plot of R(tau) vs. tau which deviates significantly from a straight line when F(infinity) is in error by as little as 5%. A scheme for evaluating D by linear analysis is presented. It is also shown that the linear reciprocal plot provides a simple method for detecting flow or multiple diffusion coefficients and for establishing conditions (data precision, differences in multiple diffusion coefficients, magnitude of flow rate compared to lateral diffusion) under which flow or multiple diffusion coefficients can be detected. These aspects are discussed in some detail.

摘要

通过光漂白后荧光恢复(FRAP)技术评估膜成分的横向扩散系数,常常因漂白后即刻强度值F(0)以及完全恢复后的强度值F(∞)的不确定性而变得复杂。这些不确定性源于漂白后仪器的稳定时间,以及在测量F(∞)所需的长时间内细胞、组织、显微镜或激光束的移动。我们开发了一种精确分析FRAP数据的方法,可将这些问题降至最低。该方法基于以下观察结果:当(a)激光束具有高斯分布,(b)恢复涉及单一扩散系数,且(c)不存在膜流动时,倒数函数R(τ)=F(∞)/[F(∞)-F(τ)]的曲线在很大的时间范围内呈线性。此外,线性曲线的截距与斜率之比等于τ1/2,即漂白荧光上升至完全恢复值F(∞)的50%所需的时间。横向扩散系数D与τ1/2的关系为τ1/2 =βw2/4D,其中β是一个定义参数,w是聚焦激光束的有效半径。结果表明,在很大的漂白百分比范围内,荧光恢复F(τ)以及恢复时间τ可由相对简单的表达式F(τ)=[F(0)+F(∞)(τ/τ1/2)]/[1 +τ/τ1/2)]表示。因此,通过用此方程进行非线性回归分析或对倒数函数R(τ)进行线性拟合,可轻松评估FRAP数据。结果表明,当F(∞)的误差低至5%时,在R(τ)与τ的曲线中,任何F(∞)的误差都可轻松检测到,该曲线会明显偏离直线。本文提出了一种通过线性分析评估D的方案。还表明,线性倒数曲线提供了一种检测流动或多个扩散系数的简单方法,并用于确定检测流动或多个扩散系数的条件(数据精度、多个扩散系数的差异、流速与横向扩散的大小比较)。将对这些方面进行详细讨论。

相似文献

1
Lateral mobility in membranes as detected by fluorescence recovery after photobleaching.
Biophys J. 1982 Oct;40(1):69-75. doi: 10.1016/S0006-3495(82)84459-7.
4
Fluorescence pattern photobleaching recovery for samples with multi-component diffusion.
Biophys Chem. 2002 May 23;97(1):29-44. doi: 10.1016/s0301-4622(02)00037-6.
5
On the Equivalence of FCS and FRAP: Simultaneous Lipid Membrane Measurements.
Biophys J. 2016 Jul 12;111(1):152-61. doi: 10.1016/j.bpj.2016.06.001.
7
Lateral diffusivity of lipid analogue excimeric probes in dimyristoylphosphatidylcholine bilayers.
Biophys J. 1990 Feb;57(2):281-90. doi: 10.1016/S0006-3495(90)82530-3.
8
Optimization of laser beams in FRAP experiments of microscopical objects.
Biophys Chem. 1985 Oct;22(4):317-22. doi: 10.1016/0301-4622(85)80055-7.

引用本文的文献

1
Nuclear mechano-confinement induces geometry-dependent HP1α condensate alterations.
Commun Biol. 2025 Feb 25;8(1):308. doi: 10.1038/s42003-025-07732-6.
2
Temperature dependence of membrane viscosity of ternary lipid GUV with L domains.
Biophys J. 2025 Mar 4;124(5):818-828. doi: 10.1016/j.bpj.2025.01.024. Epub 2025 Feb 3.
3
Activity modulation of the FF ATP synthase by a designed antimicrobial peptide via cardiolipin sequestering.
iScience. 2023 May 30;26(7):107004. doi: 10.1016/j.isci.2023.107004. eCollection 2023 Jul 21.
4
Mitochondrial membrane models built from native lipid extracts: Interfacial and transport properties.
Front Mol Biosci. 2022 Sep 23;9:910936. doi: 10.3389/fmolb.2022.910936. eCollection 2022.
5
Inferences from FRAP data are model dependent: A subdiffusive analysis.
Biophys J. 2022 Oct 18;121(20):3795-3810. doi: 10.1016/j.bpj.2022.09.015. Epub 2022 Sep 19.
7
Chitosan-covered liposomes as a promising drug transporter: nanoscale investigations.
RSC Adv. 2021 Jan 5;11(3):1503-1516. doi: 10.1039/d0ra08305d. eCollection 2021 Jan 4.
8
The control of transcriptional memory by stable mitotic bookmarking.
Nat Commun. 2022 Mar 4;13(1):1176. doi: 10.1038/s41467-022-28855-y.
10
Phase separation and toxicity of C9orf72 poly(PR) depends on alternate distribution of arginine.
J Cell Biol. 2021 Nov 1;220(11). doi: 10.1083/jcb.202103160. Epub 2021 Sep 9.

本文引用的文献

1
Fluorescence photobleaching recovery measurement of protein absolute diffusion constants.
Biophys Chem. 1979 Sep;10(2):221-9. doi: 10.1016/0301-4622(79)85044-9.
2
The effect of local anesthetics on the lateral mobility of lymphocyte membrane proteins.
Exp Cell Res. 1980 Apr;126(2):327-31. doi: 10.1016/0014-4827(80)90271-2.
3
Criticality of beam alignment in fluorescence photobleaching recovery experiments.
Biophys J. 1980 Mar;29(3):545-8. doi: 10.1016/S0006-3495(80)85153-8.
4
A microfluorimetric study of translational diffusion in erythrocyte membranes.
Biochim Biophys Acta. 1974 Nov 15;367(3):282-94. doi: 10.1016/0005-2736(74)90085-6.
5
Measurement of membrane protein lateral diffusion in single cells.
Science. 1976 Feb 6;191(4226):466-8. doi: 10.1126/science.1246629.
7
Mobility measurement by analysis of fluorescence photobleaching recovery kinetics.
Biophys J. 1976 Sep;16(9):1055-69. doi: 10.1016/S0006-3495(76)85755-4.
9
Determination of molecular motion in membranes using periodic pattern photobleaching.
Proc Natl Acad Sci U S A. 1978 Jun;75(6):2759-63. doi: 10.1073/pnas.75.6.2759.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验