Janssen T, Mrowinski D, Thoma J
HNO. 1981 Feb;29(2):52-7.
Acoustic reflex measurements are made on thirty normal and three early stage otosclerotic ears at different static pressures in the ear canal and recorded as reflex-tympanogram at 200 Hz and 660 Hz probe-tone frequency. Acoustic reflexes were elicited contralaterally with a pure-tone stimulus at 2,000 Hz. This stimulus was chosen to avoid technical artifacts. An example of a normal acoustic reflex pattern as a function of variable static pressure is presented (Fig. 1). This record was made at 20 dB above the subjects reflex threshold, using 660 Hz probe-tone frequency. The reflex deflection of susceptance is positive up to pressures of plus or minus 50 mm H2O and then becomes negative. The reflex deflection of conductance is negative in the total range. A stiffened middle-ear system shows negative reflex deflection of both admittance components. The reflex-tympanograms (Fig. 2) show the admittance component curves as a function of variable static pressure with and without eliciting the acoustic reflex in case of a normal ear, using probe-tone frequencies of 220 Hz and 660 Hz at 10 dB and at 20 dB above the subjects reflex threshold. The reflex-tympanogram in case of an early stage otosclerotic ear shows negative reflex deflection of susceptance within the total pressure range indicating pathological stiffness (Fig. 3). The reflex related change of the dynamic properties was stimulated in a mathematical model of the middle-ear (Fig. 4). The measurements could be explained in a mathematical approach.
在耳道不同静态压力下,对30只正常耳朵和3只早期耳硬化症耳朵进行声反射测量,并在200Hz和660Hz探测音频率下记录为反射鼓室图。用2000Hz纯音刺激对侧引出声反射。选择该刺激频率是为了避免技术伪迹。给出了一个正常声反射模式随可变静态压力变化的示例(图1)。该记录是在高于受试者反射阈值20dB的情况下,使用660Hz探测音频率进行的。在压力达到正负50mm H2O之前,导纳的反射偏转是正的,然后变为负的。在整个范围内,电导的反射偏转是负的。中耳系统变硬表现为两个导纳分量的反射偏转均为负。反射鼓室图(图2)显示了正常耳朵在有和没有引出声反射的情况下,导纳分量曲线随可变静态压力的变化情况,使用220Hz和并在高于受试者反射阈值10dB和20dB时660Hz的探测音频率。早期耳硬化症耳朵的反射鼓室图显示,在整个压力范围内,导纳的反射偏转均为负,表明存在病理性僵硬(图3)。在中耳的数学模型中模拟了与反射相关的动态特性变化(图4)。这些测量结果可以用数学方法进行解释。