Suppr超能文献

动态受体模式生成模型的进阶版本:通量模型。

An advanced version of the dynamic receptor pattern generation model: the flux model.

作者信息

Koch A S, Nienhaus R, Lautsch M, Lukovits I

出版信息

Biol Cybern. 1981;39(2):105-9. doi: 10.1007/BF00336736.

Abstract

In the recently described simple model of dynamic receptor pattern generation we used a two dimensional hexagonal area of a regular triangular network, formed by a statistically constant distribution of unit electostatic changes in a dynamic equilibrium. A set of 16 trnasition rules was applied to all units simultaneously; the next state of each unit depended only on the previous state of its six nearest neighbours, and the transition of the total pattern into the new one occurred in a single jump. Hence we designated the initial simple model as "jump model". In this paper we described an advanced version of the model, in which simplified rules are applied to one unit after the other in a sequential order, from left to right, starting with the top row of units. In the advanced version the state of a unit depends not only on that of its six nearest neighbours, but also on the state of all units preceding in sequence the one actually considered. This results in flux-like transitions. We therefore designated the advanced version as the "flux model". It is shown that the flux model represents a closer approximation of physical and biological realities than the original jump model.

摘要

在最近描述的动态受体模式生成的简单模型中,我们使用了一个由规则三角网络构成的二维六边形区域,该网络由处于动态平衡的单位静电变化的统计恒定分布形成。一组16条转换规则同时应用于所有单元;每个单元的下一个状态仅取决于其六个最近邻单元的先前状态,并且整个模式向新状态的转换以单次跳跃的方式发生。因此,我们将最初的简单模型称为“跳跃模型”。在本文中,我们描述了该模型的一个高级版本,其中简化规则从最上面一行单元开始,从左到右按顺序依次应用于一个单元。在高级版本中,一个单元的状态不仅取决于其六个最近邻单元的状态,还取决于在实际考虑的单元之前按顺序排列的所有单元的状态。这导致了类似通量的转换。因此,我们将高级版本称为“通量模型”。结果表明,通量模型比原始的跳跃模型更接近物理和生物现实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验