Whitaker R J, Byng G S, Gherna R L, Jensen R A
J Bacteriol. 1981 Aug;147(2):526-34. doi: 10.1128/jb.147.2.526-534.1981.
l-Tyrosine biosynthesis in nature has proven to be an exceedingly diverse gestalt of variable biochemical routing, cofactor specificity of pathway dehydrogenases, and regulation. A detailed analysis of this enzymological patterning of l-tyrosine biosynthesis formed a basis for the clean separation of five taxa among species currently named Pseudomonas, Xanthomonas, or Alcaligenes (Byng et al., J. Bacteriol. 144:247-257, 1980). These groupings paralleled taxa established independently by ribosomal ribonucleic acid/deoxyribonucleic acid (DNA) homology relationships. It was later found that the distinctive allosteric control of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase in group V, a group dominated by most named species of Xanthomonas (Whitaker et al., J. Bacteriol. 145:752-759, 1981), was the most striking and convenient criterion of group V identity. Diversity in the biochemical routing of l-phenylalanine biosynthesis and regulation was also found, and phenylalanine patterning is in fact the best single enzymatic indicator of group IV (Pseudomonas diminuta and Pseudomonas vesicularis) identity. Enzymological patterning of l-phenylalanine biosynthesis allowed discrimination of still finer groupings consistently paralleling that achieved by the criterion of DNA/DNA hybridization. Accordingly, the five ribosomal ribonucleic acid/DNA homology groups further separate into eight DNA homology subgroups and into nine subgroups based upon phenylalanine pathway enzyme profiling. (Although both fluorescent and nonfluorescent species of group I pseudomonads fall into a common DNA homology group, fluorescent species were distinct from nonfluorescent species in our analysis.) Hence, phenylalanine patterning data provide a relatively fine-tuned probe of hierarchical level. The combined application of these various enzymological characterizations, feasibly carried out in crude extracts, offers a comprehensive and reliable definition of 11 pseudomonad subgroups, 2 of them being represented by species of Alcaligenes.
自然界中L-酪氨酸的生物合成已被证明是一个极其多样的整体,包括可变的生化途径、途径脱氢酶的辅因子特异性以及调控。对L-酪氨酸生物合成的这种酶学模式进行详细分析,为目前命名为假单胞菌属、黄单胞菌属或产碱菌属的物种中的五个分类群的清晰分离奠定了基础(Byng等人,《细菌学杂志》144:247 - 257,1980年)。这些分组与通过核糖体核糖核酸/脱氧核糖核酸(DNA)同源关系独立建立的分类群平行。后来发现,在第五组中,3-脱氧-D-阿拉伯庚酮糖酸7-磷酸合酶的独特变构控制是第五组身份最显著且方便的标准,第五组以大多数命名的黄单胞菌属物种为主(Whitaker等人,《细菌学杂志》145:7-52 - 759,1981年)。还发现了L-苯丙氨酸生物合成和调控的生化途径多样性,事实上,苯丙氨酸模式是第四组(缺陷假单胞菌和泡囊假单胞菌)身份的最佳单一酶学指标。L-苯丙氨酸生物合成的酶学模式能够区分更精细的分组,这些分组始终与通过DNA/DNA杂交标准所实现的分组平行。因此,五个核糖体核糖核酸/DNA同源组进一步细分为八个DNA同源亚组,并根据苯丙氨酸途径酶谱分析细分为九个亚组。(虽然第一组假单胞菌的荧光和非荧光物种属于同一个DNA同源组,但在我们的分析中,荧光物种与非荧光物种不同。)因此,苯丙氨酸模式数据提供了一个相对微调的层级水平探针。这些各种酶学特征的联合应用,可在粗提物中切实可行地进行,为11个假单胞菌亚组提供了全面且可靠的定义,其中2个亚组由产碱菌属的物种代表。