Suppr超能文献

多层阈值网络中的学习过程。

Learning processes in multilayer threshold nets.

作者信息

Bobrowski L

出版信息

Biol Cybern. 1978 Nov 10;31(1):1-6. doi: 10.1007/BF00337365.

Abstract

An algorithm of learning in multilayer threshold nets without feedbacks is proposed. The net is built of threshold elements with binary inputs. During a learning process each input vector chi is accompanied by a teacher's decision omega (omega epsilon(1,...,M)). The pairs (chi[n], omega[n]) appear in successive steps independently according to some unknown stationary distribution p(chi, omega). The problem of learning of a threshold net has been decomposed to a series of problems of learning of the threshold elements. The proposed learning algorithm of the threshold elements has a perceptron-like form. It was proven that a decision rule of the threshold net stabilizes after a finite number of steps. For definite classes (p(chi,omega))K of distributions p(chi, omega), an optimal decision rule stabilizes after a finite number of steps. These classes (p(chi, omega))K also contain distributions describing learning processes with perturbations.

摘要

提出了一种无反馈多层阈值网络的学习算法。该网络由具有二进制输入的阈值元件构成。在学习过程中,每个输入向量χ都伴随着教师的决策ω(ω∈{1,...,M})。根据某种未知的平稳分布p(χ, ω),对(χ[n], ω[n])对在连续步骤中独立出现。阈值网络的学习问题已被分解为一系列阈值元件的学习问题。所提出的阈值元件学习算法具有类似感知机的形式。已证明阈值网络的决策规则在有限步数后会稳定下来。对于分布p(χ, ω)的特定类别(p(χ,ω))K,最优决策规则在有限步数后会稳定下来。这些类别(p(χ, ω))K还包含描述带有扰动的学习过程的分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验