Feldman A G
Biol Cybern. 1981;42(2):107-16. doi: 10.1007/BF00336728.
A hypothesis is presented which describes, in biomechanical terms, the central programs underlying horizontal eye movements in man. It is suggested that eye movements are produced by means of programmed shifts of the so-called invariant muscle characteristics (static force vs angle phi of gaze). These shifts lead to a change of the equilibrium point resulting from the interaction of agonist and antagonist muscles and, as a consequence, to movement and the attainment of a new position of gaze. A reciprocal or a coactivation command to agonist and antagonist muscles occurs when their characteristics shift with respect to the coordinate phi in the same or opposite directions, respectively. It is proposed that during pursuit and saccadic eye movements a superposition of the both central commands occurs. During a saccade, the reciprocal command develops evenly up to a certain level. The initial and final levels of the reciprocal command dictate the respective position of gaze and therefore the size of the saccade. The coactivation command develops to a maximum level and is slowly switched off when the new position of gaze has been achieved. The magnitude of the coactivation command seems to be not connected with an absolute position of gaze. It provides probably a stability of the movement and, in particular, prevents overshoot and oscillation during the saccade. The same timing of these commands occurs during pursuit movements, but the magnitude of the coactivation command and the rates of the development of the both commands are less in this case and correlate with the velocity of the movement. This hypothesis enables the tension changes in the muscle during saccadic and pursuit movements to be simulated in qualitative accordance with unique experimental data obtained by Collins et al. (1975). The functional significance of superposition of these motor commands and similarity in the efferent organization of eye and limb movements are discussed. Analysis of limb movements in man and animals has allowed one to formulate some concepts concerning the motor control. For instance, it has been suggested and experimentally confirmed that central commands are adequately expressed in terms of shifts of muscle static length - force characteristics and specify an equilibrium point resulting from the interaction of agonist and antagonist muscles (Asatryan and Feldman, 1965; Felman, 1966a, 1974, 1979, 1980a, b; Bizzi et al., 1976; Kelso, 1977; Polit and Bizzi, 1978, 1979; Houk, 1979; Kelso and Holt, 1980). Experimental observation have also shown that two central commands, i.e. reciprocal and unidirectional activation of agonist and antagonist muscles are usually combined by the nervous system in a proper manner depending on the motor task (Feldman, 1979, 1980a, b). The present, theoretical report is designed to show that these concepts are consistent with available experimental data concerning oculomotor control.
本文提出了一个假设,从生物力学角度描述了人类水平眼球运动的中枢程序。该假设认为,眼球运动是通过所谓的不变肌肉特性(静力与注视角度φ)的程序化变化产生的。这些变化导致了由主动肌和拮抗肌相互作用产生的平衡点的改变,进而导致眼球运动并达到新的注视位置。当主动肌和拮抗肌的特性分别相对于坐标φ沿相同或相反方向变化时,会分别向它们发出相互或共同激活指令。本文提出,在跟踪和扫视眼球运动过程中,这两种中枢指令会叠加。在扫视过程中,相互指令均匀发展至一定水平。相互指令的初始和最终水平决定了相应的注视位置,从而决定了扫视的幅度。当达到新的注视位置时,共同激活指令发展到最大水平并缓慢关闭。共同激活指令的幅度似乎与注视的绝对位置无关。它可能为运动提供稳定性,特别是在扫视过程中防止过冲和振荡。在跟踪运动过程中,这些指令的时间相同,但在这种情况下,共同激活指令的幅度以及两种指令的发展速率较小,并且与运动速度相关。这个假设能够根据柯林斯等人(1975年)获得的独特实验数据,定性地模拟扫视和跟踪运动过程中肌肉的张力变化。本文讨论了这些运动指令叠加的功能意义以及眼球和肢体运动传出组织的相似性。对人类和动物肢体运动的分析使人们能够形成一些关于运动控制的概念。例如,有人提出并通过实验证实,中枢指令可以通过肌肉静息长度 - 力特性的变化充分表达,并指定由主动肌和拮抗肌相互作用产生的平衡点(阿萨特良和费尔德曼,1965年;费尔德曼,1966年a、1974年、1979年、1980年a、b;比齐等人,1976年;凯尔索,1977年;波利特和比齐,1978年、1979年;胡克,1979年;凯尔索和霍尔特,1980年)。实验观察还表明,神经系统通常会根据运动任务以适当的方式将两种中枢指令,即主动肌和拮抗肌的相互和单向激活结合起来(费尔德曼,1979年、1980年a、b)。本理论报告旨在表明,这些概念与关于眼球运动控制的现有实验数据一致。