Gushchin V A
Tsitologiia. 1981 Dec;23(12):1428-36.
A mathematical model of the cell tumour kinetics has been analysed for a population being characterized with the exponential growth of the cell number, the absence of cell losses, and the proliferative pool Pc less than or equal to 1. It is shown that the values of part of proliferative cells, being in one phase of the mitotic cycle, do not depend on the kind of cell distribution function in respect to the phase duration. A graphic method is proposed for the estimation of the proliferative pool, the mean mitotic duration and the doubling time of the cell number, provided we know the mitotic, index, the index of the phase S, and the mean durations of mitotic cycle, of mitosis and of phase S.
对细胞肿瘤动力学的一个数学模型进行了分析,该模型针对的是具有细胞数量呈指数增长、无细胞损失且增殖池(Pc)小于或等于(1)特征的群体。结果表明,处于有丝分裂周期某一阶段的部分增殖细胞的值,不依赖于关于阶段持续时间的细胞分布函数的种类。提出了一种图解方法,用于估计增殖池、平均有丝分裂持续时间和细胞数量的倍增时间,前提是我们知道有丝分裂指数、(S)期指数以及有丝分裂周期、有丝分裂和(S)期的平均持续时间。