Suppr超能文献

预测交感神经切除术的成功率:一项使用判别函数和多元回归分析的前瞻性研究。

Predicting the success of a sympathectomy: a prospective study using discriminant function and multiple regression analysis.

作者信息

Walker P M, Johnston K W

出版信息

Surgery. 1980 Feb;87(2):216-21.

PMID:7355393
Abstract

A prospective study of 72 limbs treated with phenol sympatholysis for inoperable peripheral arterial occlusive disease was carried out in order to determine which factor or combination of factors could most accurately be used to predict the success or the failure of the sympathetic interruption. Seven variables were recorded prior to phenol sympatholysis and the patients were followed up to 3 years in order to determine the degree of success or failure of the sympathectomy. The results of discriminant function analysis of these data showed that the most important variables in predicting the outcome were (1) the level of ankle systolic pressure, (2) the presence or absence of a neuropathy, and (3) the extent of the ischemic damage. The correct outcome was predicted in 87% of the cases. Using these three variables, multiple regression analysis was performed to construct a table showing the percentage chance of a successful outcome from a sympathectomy. The results show that a phenol sympathectomy is likely to be successful in the management of a patient with peripheral arterial occlusive disease if there is no evidence of a somatic (and hence autonomic) neuropathy, if the ankle systolic pressure is above 30 mm Hg, and if the tissue damage is not too extensive (i.e., only rest pain, night pain, or digital gangrene is present).

摘要

为了确定哪些因素或因素组合能够最准确地用于预测交感神经阻断术的成功或失败,我们对72例因无法手术的外周动脉闭塞性疾病而接受酚妥拉明交感神经松解术治疗的肢体进行了一项前瞻性研究。在酚妥拉明交感神经松解术前记录了七个变量,并对患者进行了长达3年的随访,以确定交感神经切除术的成功或失败程度。对这些数据的判别函数分析结果表明,预测结果的最重要变量为:(1)踝部收缩压水平;(2)是否存在神经病变;(3)缺血损伤的程度。87%的病例预测结果正确。利用这三个变量进行多元回归分析,构建了一个表格,显示交感神经切除术成功的百分比概率。结果表明,如果没有躯体(进而自主神经)神经病变的证据、踝部收缩压高于30 mmHg且组织损伤不太广泛(即仅存在静息痛、夜间痛或指端坏疽),那么酚妥拉明交感神经切除术在治疗外周动脉闭塞性疾病患者时可能会成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验