Suppr超能文献

Increased penetration of nonelectrolytes into mouse skin during iontophoretic water transport (iontohydrokinesis).

作者信息

Gangarosa L P, Park N H, Wiggins C A, Hill J M

出版信息

J Pharmacol Exp Ther. 1980 Mar;212(3):377-81.

PMID:7359341
Abstract

Iontophoresis increases penetration of ionic drugs into surface tissues by repulsion of ions at the active electrode. However, we reported increased penetration of idoxuridine by either anode(+) or cathode(-). Although not highly ionized, idoxuridine forms anions in aqueous solution requiring introduction under the cathode(-). We postulated that increased penetration of idoxuridine after anodal(+)-iontophoresis may result from water movement associated with sodium ion transfer. When water is transported into tissue, nonelectrolytes may also be transported. The term iontohydrokinesis was adopted to describe water transport during iontophoresis, and no specific mechanism is implied by this new term. Iontohydrokinesis was studied after cathodal(-)- and anodal(+)-iontophoresis of dilute NaCl solutions containing [3H]-9-beta-D-arabinofuranosyladenine, (Ara-A), [3H]H2O and [3H]thymidine (dThd). Since Ara-A and dThd are nonconductive, any increase in penetration must be due to water transport by iontohydrokinesis. Anodal iontophoresis resulted in the following statistically significant increases in penetration compared to topical application: [3H]H2O, +155%; [3H]dThd, +429% and [3H]Ara-A, +488%. Cathodal(-)-iontophoresis resulted in statistically significant increases in penetration: [3H]H2O, +78% and [3H]dThd, +286%; the penetration of [3H]Ara-A increased +56% but this was not statistically significant. Electrical current does not change skin permeability.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验