Holt J, Lumsden J H, Mullen K
Can J Comp Med. 1980 Jan;44(1):43-51.
Much of the statistical analysis of biological data depends on the assumption that the data are Gaussian (or normal). Some well-known procedures which use this assumption are (i) t-tests (ii) analysis of variance (iii) regression estimation and their attendant tests. If the data are not Gaussian, one can use nonparametric statistical techniques, if they exist, but they often require larger amounts of data to obtain equally precise results (see for example Lumsden and Mullen (7) for a discussion of this with regard to reference value estimation). If the data are not Gaussian a fruitful approach to their analyses lies in trying to find a transformation which will render tham Gaussian. The data thus transformed to a Gaussian form, can be analyzed validly using standard statistical techniques. The process of finding a good transformation of the data has often been an arbitrary and ad hoc one. The purpose of this article is to look at a particular technique for attempting to render nonGaussian data Gaussian, and to illustrate its applicability and breadth of use.
生物学数据的大部分统计分析都依赖于数据呈高斯分布(或正态分布)这一假设。一些使用该假设的著名方法有:(i)t检验;(ii)方差分析;(iii)回归估计及其相关检验。如果数据不是高斯分布的,人们可以使用非参数统计技术(如果存在的话),但通常需要更多的数据才能获得同样精确的结果(例如,关于参考值估计的讨论可参见Lumsden和Mullen (7))。如果数据不是高斯分布的,对其进行分析的一个有效方法是尝试找到一种能使其呈高斯分布的变换。这样变换为高斯形式的数据,可以使用标准统计技术进行有效分析。找到数据的良好变换过程通常是任意的且是临时的。本文的目的是探讨一种使非高斯数据呈高斯分布的特定技术,并说明其适用性和使用范围。