Suppr超能文献

Calcium and cardiac electrophysiology. Some experimental considerations.

作者信息

Morad M, Maylie J

出版信息

Chest. 1980 Jul;78(1 Suppl):166-73.

PMID:7398404
Abstract

Electrophysiologic experiments in cardiac tissue suggest that Ca2+ is involved in generation of the action potential, the pacemaker potential, and conduction of the slow wave of depolarization. For instance, removal of Ca2+ inhibits the slow inward current and prolongs the action potential and suppresses the slow diastolic depolarization. Divalant cations Mn2+, Co2+, Cd2+, Mg2+, block the slow inward current and suppress pacemaker activity, but shorten the action potential. Ni2+ specifically blocks the slow inward current and prolongs the action potential. Ca2+ also plays a central role in generation of diastolic depolarizaittn. Cd2+ inhibits the diastolic depolarizaton and the upstoke of the action potential in SA nodal cells, while blocking the time-dependent inward current in the pacemaker potential range and the time-dependent outward current. A variety of molecular transport systems ranging from the Ca-channel to a Ca2+-Na+ or Ca2+-K+ exchanges to Ca2+-induced activation of the K+ current have been postulated to explain the effects of Ca2+ on cardiac electrophysiologic processes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验