Suppr超能文献

非典型抗生素耐药性对基于模式识别的微生物鉴定的影响。

Effect of atypical antibiotic resistance on microorganism identification by pattern recognition.

作者信息

Boyd J C, Lewis J W, Marr J J, Harper A M, Kowalski B R

出版信息

J Clin Microbiol. 1978 Dec;8(6):689-94. doi: 10.1128/jcm.8.6.689-694.1978.

Abstract

We classified microorganisms from the clinical laboratory by using information provided by the Gram stain and antibiotic sensitivity profiles obtained with the Bauer-Kirby technique. Approximately 4,000 microorganisms, routinely identified and tested for antibiotic sensitivities in a large hospital microbiology laboratory, were used as a data set for several pattern recognition classification methods: K--nearest-neighbor analysis, statistical isolinear multicomponent analysis, Bayesian inference, and linear discriminant analysis. K--nearest-neighbor analysis yielded the highest prospective classification accuracy for gram-negative organisms, 90%. When those organisms displaying an atypical antibiotic resistance pattern were excluded from the data, the gram-negative classification accuracy improved to 95%. These results are inferior to currently accepted biochemical identification methods. Microorganisms with atypical antibiotic resistance patterns are likely to be misidentified and are common enough (17% of our isolates) to limit the feasibility of routine identification of microorganisms from their antibiotic sensitivities.

摘要

我们利用革兰氏染色提供的信息以及用鲍-柯氏技术获得的抗生素敏感性图谱,对临床实验室的微生物进行分类。在一家大型医院微生物实验室中,约4000种经常规鉴定并测试抗生素敏感性的微生物被用作几种模式识别分类方法的数据集:K近邻分析、统计等线性多组分分析、贝叶斯推理和线性判别分析。K近邻分析对革兰氏阴性菌的前瞻性分类准确率最高,为90%。当数据中排除那些显示非典型抗生素耐药模式的微生物时,革兰氏阴性菌的分类准确率提高到了95%。这些结果不如目前公认的生化鉴定方法。具有非典型抗生素耐药模式的微生物很可能被误识别,而且其数量足够多(占我们分离菌株的17%),限制了根据抗生素敏感性对微生物进行常规鉴定的可行性。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验