Suppr超能文献

间隙连接动力学:二价阳离子的可逆效应

Gap junction dynamics: reversible effects of divalent cations.

作者信息

Peracchia C, Peracchia L L

出版信息

J Cell Biol. 1980 Dec;87(3 Pt 1):708-18. doi: 10.1083/jcb.87.3.708.

Abstract

Reversible changes in gap junction structure similar to those previously seen to parallel electrical uncoupling (9, 33, 34) are produced by treating with Ca++ or Mg++ gap junctions isolated in EDTA from calf lens fibers. The changes, characterized primarily by a switch from disordered to crystalline particle packings, occur at a [Ca++] of 5 x 10(-7) M or higher and a [Mg++] of 1 x 10(-3) M or higher and can be reversed by exposing the junctions to Ca++- and Mg++-free EGTA solutions. Similar changes are obtained in junctions of rat stomach epithelia incubated at 37 degrees C in well-oxygenated Tyrode's solutions containing a Ca++ ionophore (A23187). Deep etching experiments on isolated lens junctions show that the true cytoplasmic surface of the junctions (PS face) is mostly bare, suggesting that the particles may not be connected to cytoskeletal elements. A hypothesis is proposed suggesting a mechanism of particle aggregation and channel narrowing based on neutralization of negative charges by divalent cations or H+.

摘要

用Ca++或Mg++处理从牛晶状体纤维中在EDTA中分离出的间隙连接,会产生与之前观察到的与电去偶联平行的间隙连接结构的可逆变化(9, 33, 34)。这些变化主要表现为从无序颗粒堆积转变为晶体颗粒堆积,在[Ca++]为5×10(-7) M或更高以及[Mg++]为1×10(-3) M或更高时发生,并且通过将连接暴露于无Ca++和Mg++的EGTA溶液中可以逆转。在含有Ca++离子载体(A23187)的充分氧合的台氏液中于37℃孵育的大鼠胃上皮连接中也获得了类似的变化。对分离的晶状体连接进行的深度蚀刻实验表明,连接的真正细胞质表面(PS面)大多是裸露的,这表明颗粒可能未与细胞骨架成分相连。提出了一个假说,表明基于二价阳离子或H+对负电荷的中和作用,颗粒聚集和通道变窄的机制。

相似文献

1
Gap junction dynamics: reversible effects of divalent cations.
J Cell Biol. 1980 Dec;87(3 Pt 1):708-18. doi: 10.1083/jcb.87.3.708.
2
Gap junction dynamics: reversible effects of hydrogen ions.
J Cell Biol. 1980 Dec;87(3 Pt 1):719-27. doi: 10.1083/jcb.87.3.719.
3
Calcium effects on gap junction structure and cell coupling.
Nature. 1978 Feb 16;271(5646):669-71. doi: 10.1038/271669a0.
5
Gap junctions. Structural changes after uncoupling procedures.
J Cell Biol. 1977 Mar;72(3):628-41. doi: 10.1083/jcb.72.3.628.
6
The structural organization and protein composition of lens fiber junctions.
J Cell Biol. 1989 Jun;108(6):2255-75. doi: 10.1083/jcb.108.6.2255.
7
The connexon order in isolated lens gap junctions.
J Ultrastruct Res. 1980 Jul;72(1):27-38. doi: 10.1016/s0022-5320(80)90132-x.
8
Cytoplasmic surface ultrastructures of gap junctions in bovine lens fibers.
Invest Ophthalmol Vis Sci. 1993 Jun;34(7):2164-73.
9
The structure of junctions between lens fiber cells.
Biosci Rep. 1982 May;2(5):333-41. doi: 10.1007/BF01115119.
10
On the structural organization of isolated bovine lens fiber junctions.
J Cell Biol. 1982 Apr;93(1):175-89. doi: 10.1083/jcb.93.1.175.

引用本文的文献

1
The rectification of heterotypic Cx46/Cx50 gap junction channels depends on intracellular magnesium.
Biophys Rep. 2024 Oct 31;10(5):336-348. doi: 10.52601/bpr.2024.240015.
3
Calmodulin-Connexin Partnership in Gap Junction Channel Regulation-Calmodulin-Cork Gating Model.
Int J Mol Sci. 2021 Dec 2;22(23):13055. doi: 10.3390/ijms222313055.
5
Calmodulin-Mediated Regulation of Gap Junction Channels.
Int J Mol Sci. 2020 Jan 12;21(2):485. doi: 10.3390/ijms21020485.
6
Calcium-phosphate microprecipitates mimic microparticles when examined with flow cytometry.
Cytometry A. 2013 Feb;83(2):242-50. doi: 10.1002/cyto.a.22222. Epub 2012 Nov 2.
7
Gating of connexin 43 gap junctions by a cytoplasmic loop calmodulin binding domain.
Am J Physiol Cell Physiol. 2012 May 15;302(10):C1548-56. doi: 10.1152/ajpcell.00319.2011. Epub 2012 Mar 14.
8
Intercellular ice propagation: experimental evidence for ice growth through membrane pores.
Biophys J. 2001 Sep;81(3):1389-97. doi: 10.1016/S0006-3495(01)75794-3.
9
Ca2+ mobilization and interlayer signal transfer in the heterocellular bilayered epithelium of the rabbit ciliary body.
J Physiol. 1996 Oct 1;496 ( Pt 1)(Pt 1):25-37. doi: 10.1113/jphysiol.1996.sp021662.
10
Gap junction dynamics: reversible effects of hydrogen ions.
J Cell Biol. 1980 Dec;87(3 Pt 1):719-27. doi: 10.1083/jcb.87.3.719.

本文引用的文献

1
Gap junction dynamics: reversible effects of hydrogen ions.
J Cell Biol. 1980 Dec;87(3 Pt 1):719-27. doi: 10.1083/jcb.87.3.719.
3
Structural correlates of gap junction permeation.
Int Rev Cytol. 1980;66:81-146. doi: 10.1016/s0074-7696(08)61972-5.
4
Intracellular pH in early Xenopus embryos: its effect on current flow between blastomeres.
J Physiol. 1980 Mar;300:489-504. doi: 10.1113/jphysiol.1980.sp013174.
5
Cell surface membranes in close contact. Role of calcium and magnesium ions.
J Colloid Interface Sci. 1967 Sep;25(1):34-46. doi: 10.1016/0021-9797(67)90007-0.
6
The recovery of resting potential and input resistance in sheep heart injured by knife or laser.
J Physiol. 1970 Jul;208(3):547-62. doi: 10.1113/jphysiol.1970.sp009136.
7
Permeability of membrane junctions.
Ann N Y Acad Sci. 1966 Jul 14;137(2):441-72. doi: 10.1111/j.1749-6632.1966.tb50175.x.
8
Magnesium exchange in rat ventricle.
J Physiol. 1972 Jul;224(1):121-39. doi: 10.1113/jphysiol.1972.sp009884.
10
Cobalt ions cross an electrotonic synapse if cytoplasmic concentration is low.
Brain Res. 1974 Aug 16;76(2):343-6. doi: 10.1016/0006-8993(74)90466-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验