Boyd D C, Turner P C, Watkins N J, Gerster T, Murphy S
Sir William Dunn School of Pathology, Oxford, UK.
J Mol Biol. 1995 Nov 10;253(5):677-90. doi: 10.1006/jmbi.1995.0582.
Deletion and mutation studies of the human 7SK gene transfected into HeLa cells have identified three functional regions of the promoter corresponding to the TATA box at -25, the proximal sequence element (PSE) between -49 and -65 and the distal sequence element (DSE) between -243 and -210. These elements show sequence homology to equivalent regions in other snRNA genes and are functionally analogous. Unlike the DSEs of many snRNA genes however, the 7SK DSE does not contain a consensus binding site for the transcription factor Oct-1 but rather, contains two non-consensus Oct-1 binding sites that can function independently of one another to enhance transcription. Unusually, the 7SK PSE can retain function even after extensive mutation and removal of the conserved TGACC of the PSE has little effect in the context of the whole promoter. However, the same mutation abolishes transcription in the absence of the DSE suggesting that protein/protein interactions between DSE and PSE binding factors can compensate for a mutant PSE. Mutation of the 7SK TATA box allows snRNA type transcription by RNA polymerase II to occur and this is enhanced by the DSE, indicating that both the DSE and the PSE can also function with pol II. In addition, mutation of the TATA box does not abolish pol III dependent transcription, suggesting that other sequence elements may also play a role in the determination of polymerase specificity. Although the human 7SK gene is transcribed efficiently in Xenopus oocytes, analysis of the 7SK wild-type gene and mutants in Xenopus oocytes gives significantly different results from the analysis in HeLa cells indicating that the recognition of functional elements is not the same in the two systems.
对转染到HeLa细胞中的人类7SK基因进行的缺失和突变研究,确定了启动子的三个功能区域,分别对应于-25处的TATA框、-49至-65之间的近端序列元件(PSE)以及-243至-210之间的远端序列元件(DSE)。这些元件与其他小核RNA基因的等效区域具有序列同源性,并且在功能上类似。然而,与许多小核RNA基因的DSE不同,7SK DSE不包含转录因子Oct-1的共有结合位点,而是包含两个非共有Oct-1结合位点,它们可以彼此独立发挥作用以增强转录。不同寻常的是,即使在广泛突变后,7SK PSE仍可保留功能,并且去除PSE保守的TGACC在整个启动子的背景下影响很小。然而,在没有DSE的情况下,相同的突变会消除转录,这表明DSE和PSE结合因子之间的蛋白质/蛋白质相互作用可以补偿突变的PSE。7SK TATA框的突变允许RNA聚合酶II进行小核RNA类型的转录,并且这会被DSE增强,表明DSE和PSE也可以与聚合酶II一起发挥作用。此外,TATA框的突变不会消除聚合酶III依赖性转录,这表明其他序列元件也可能在聚合酶特异性的确定中起作用。虽然人类7SK基因在非洲爪蟾卵母细胞中高效转录,但对非洲爪蟾卵母细胞中的7SK野生型基因和突变体的分析与在HeLa细胞中的分析结果显著不同,这表明两个系统中对功能元件的识别是不同的。