Morita K, Ihnken K, Buckberg G D, Sherman M P, Young H H
Department of Surgery, University of California, Los Angeles School of Medicine, 90095-1724 USA.
J Thorac Cardiovasc Surg. 1995 Oct;110(4 Pt 2):1235-44. doi: 10.1016/s0022-5223(95)70010-2.
This study of an in vivo infantile piglet model of compensated hypoxemia tests the hypothesis that reoxygenation on hyperoxemic cardiopulmonary bypass produces oxygen-mediated myocardial injury that can be limited by normoxemic management of cardiopulmonary bypass and the interval after cardiopulmonary bypass. Twenty-five immature piglets (< 3 weeks old) were placed on 120 minutes of cardiopulmonary bypass and five piglets served as a biochemical control group without cardiopulmonary bypass. Five piglets underwent cardiopulmonary bypass without hypoxemia (cardiopulmonary bypass control). Twenty others became hypoxemic on cardiopulmonary bypass for 60 minutes by lowering oxygen tension to about 25 mm Hg. The study was terminated in five piglets at the end of hypoxemia, whereas 15 others were reoxygenated at an oxygen tension about 400 mm Hg or about 100 mm Hg for 60 minutes. Oxygen delivery was maintained during hypoxemia by increasing cardiopulmonary bypass flow and hematocrit level to avoid metabolic acidosis and lactate production. Myocardial function after cardiopulmonary bypass was evaluated from end-systolic elastance (conductance catheter) and Starling curve analysis. Myocardial conjugated diene production and creatine kinase leakage were assessed as biochemical markers of injury, and antioxidant reserve capacity was determined by measuring malondialdehyde after cardiopulmonary bypass in myocardium incubated in the oxidant, t-butylhydroperoxide. Cardiopulmonary bypass without hypoxemia caused no oxidant or functional damage. Conversely, reoxygenation at an oxygen tension about 400 mm Hg raised myocardial conjugated diene level and creatine kinase production (CD: 3.5 +/- 0.7 A233 nm/min/100 g, creatine kinase: 8.5 +/- 1.5 U/min/100 g, p < 0.05 vs cardiopulmonary bypass control), reduced antioxidant reserve capacity (malondialdehyde: 1115 +/- 60 nmol/g protein at 4.0 mmol t-butylhydroperoxide, p < 0.05 vs control), and produced severe postbypass dysfunction (end-systolic elastance recovered only 39% +/- 7%, p < 0.05 vs cardiopulmonary bypass control). Lowering oxygen tension to about 100 mm Hg during reoxygenation avoided conjugated diene production and creatine kinase release, retained normal antioxidant reserve, and improved functional recovery (80% +/- 11%, p < 0.05 vs oxygen tension about 400 mm Hg). These findings show that conventional hyperoxemic cardiopulmonary bypass causes unintended reoxygenation injury in hypoxemic immature hearts that may contribute to myocardial dysfunction after cardiopulmonary bypass and that normoxemic management may be used to surgical advantage.
本项关于代偿性低氧血症的体内幼猪模型研究,检验了以下假设:在高氧体外循环期间进行复氧会产生氧介导的心肌损伤,而这种损伤可通过体外循环的常氧管理及体外循环后的时间间隔来限制。25只未成熟仔猪(小于3周龄)接受120分钟的体外循环,5只仔猪作为未进行体外循环的生化对照组。5只仔猪接受无低氧血症的体外循环(体外循环对照组)。另外20只仔猪在体外循环期间通过将氧分压降至约25 mmHg而出现低氧血症60分钟。5只仔猪在低氧血症结束时终止研究,而另外15只仔猪在约400 mmHg或约100 mmHg的氧分压下复氧60分钟。在低氧血症期间,通过增加体外循环流量和血细胞比容水平来维持氧输送,以避免代谢性酸中毒和乳酸生成。体外循环后的心肌功能通过收缩末期弹性(传导导管)和斯塔林曲线分析进行评估。心肌共轭二烯生成和肌酸激酶泄漏作为损伤的生化标志物进行评估,抗氧化储备能力通过在加入氧化剂叔丁基过氧化氢的情况下孵育心肌,在体外循环后测量丙二醛来确定。无低氧血症的体外循环未造成氧化剂或功能损害。相反,在约400 mmHg的氧分压下复氧会提高心肌共轭二烯水平和肌酸激酶生成(共轭二烯:3.5±0.7 A233 nm/分钟/100 g,肌酸激酶:8.5±1.5 U/分钟/100 g,与体外循环对照组相比,p<0.05),降低抗氧化储备能力(在4.0 mmol叔丁基过氧化氢时丙二醛:1115±60 nmol/g蛋白质,与对照组相比,p<0.05),并产生严重的体外循环后功能障碍(收缩末期弹性仅恢复39%±7%,与体外循环对照组相比,p<0.05)。在复氧期间将氧分压降至约100 mmHg可避免共轭二烯生成和肌酸激酶释放,保留正常的抗氧化储备,并改善功能恢复(80%±11%,与约400 mmHg的氧分压相比,p<0.05)。这些发现表明,传统的高氧体外循环会在低氧未成熟心脏中导致意外的复氧损伤,这可能导致体外循环后的心肌功能障碍,并且常氧管理可能具有手术优势。