Suppr超能文献

人机对话系统的部署

Deployment of human-machine dialogue systems.

作者信息

Roe D B

机构信息

AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.

出版信息

Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10017-22. doi: 10.1073/pnas.92.22.10017.

Abstract

The deployment of systems for human-to-machine communication by voice requires overcoming a variety of obstacles that affect the speech-processing technologies. Problems encountered in the field might include variation in speaking style, acoustic noise, ambiguity of language, or confusion on the part of the speaker. The diversity of these practical problems encountered in the "real world" leads to the perceived gap between laboratory and "real-world" performance. To answer the question "What applications can speech technology support today?" the concept of the "degree of difficulty" of an application is introduced. The degree of difficulty depends not only on the demands placed on the speech recognition and speech synthesis technologies but also on the expectations of the user of the system. Experience has shown that deployment of effective speech communication systems requires an iterative process. This paper discusses general deployment principles, which are illustrated by several examples of human-machine communication systems.

摘要

通过语音进行人机通信的系统部署需要克服各种影响语音处理技术的障碍。在该领域遇到的问题可能包括说话风格的差异、声学噪声、语言的模糊性或说话者的困惑。在“现实世界”中遇到的这些实际问题的多样性导致了实验室性能与“现实世界”性能之间的明显差距。为了回答“语音技术如今能支持哪些应用?”这个问题,引入了应用“难度级别”的概念。难度级别不仅取决于对语音识别和语音合成技术的要求,还取决于系统用户的期望。经验表明,有效的语音通信系统的部署需要一个迭代过程。本文讨论了一般的部署原则,并通过几个人机通信系统的例子进行说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c2/40728/ae04b87877c0/pnas01500-0116-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验