Yin H, Anders M W, Korzekwa K R, Higgins L, Thummel K E, Kharasch E D, Jones J P
Department of Pharmacology, University of Rochester, NY 14642, USA.
Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11076-80. doi: 10.1073/pnas.92.24.11076.
A computational model is presented that can be used as a tool in the design of safer chemicals. This model predicts the rate of hydrogen-atom abstraction by cytochrome P450 enzymes. Excellent correlations between biotransformation rates and the calculated activation energies (delta Hact) of the cytochrome P450-mediated hydrogen-atom abstractions were obtained for the in vitro biotransformation of six halogenated alkanes (1-fluoro-1,1,2,2-tetrachloroethane, 1,1-difluoro-1,2,2-trichloroethane, 1,1,1-trifluro-2,2-dichloroethane, 1,1,1,2-tetrafluoro-2-chloroethane, 1,1,1,2,2,-pentafluoroethane, and 2-bromo-2-chloro-1,1,1-trifluoroethane) with both rat and human enzyme preparations: In(rate, rat liver microsomes) = 44.99 - 1.79(delta Hact), r2 = 0.86; In(rate, human CYP2E1) = 46.99 - 1.77(delta Hact), r2 = 0.97 (rates are in nmol of product per min per nmol of cytochrome P450 and energies are in kcal/mol). Correlations were also obtained for five inhalation anesthetics (enflurane, sevoflurane, desflurane, methoxyflurane, and isoflurane) for both in vivo and in vitro metabolism by humans: In[F(-)]peak plasma = 42.87 - 1.57(delta Hact), r2 = 0.86. To our knowledge, these are the first in vivo human metabolic rates to be quantitatively predicted. Furthermore, this is one of the first examples where computational predictions and in vivo and in vitro data have been shown to agree in any species. The model presented herein provides an archetype for the methodology that may be used in the future design of safer chemicals, particularly hydrochlorofluorocarbons and inhalation anesthetics.
本文提出了一种计算模型,可作为设计更安全化学品的工具。该模型可预测细胞色素P450酶夺取氢原子的速率。对于六种卤代烷烃(1-氟-1,1,2,2-四氯乙烷、1,1-二氟-1,2,2-三氯乙烷、1,1,1-三氟-2,2-二氯乙烷、1,1,1,2-四氟-2-氯乙烷、1,1,1,2,2-五氟乙烷和2-溴-2-氯-1,1,1-三氟乙烷)在大鼠和人酶制剂中的体外生物转化,生物转化率与细胞色素P450介导的氢原子夺取反应的计算活化能(ΔHact)之间具有良好的相关性:In(速率,大鼠肝微粒体)= 44.99 - 1.79(ΔHact),r2 = 0.86;In(速率,人CYP2E1)= 46.99 - 1.77(ΔHact),r2 = 0.97(速率单位为每nmol细胞色素P450每分钟产生的产物nmol数,能量单位为kcal/mol)。对于五种吸入麻醉剂(恩氟烷、七氟烷、地氟烷、甲氧氟烷和异氟烷)在人体体内和体外代谢的情况,也获得了相关性:In[F(-)]血浆峰值 = 42.87 - 1.57(ΔHact),r2 = 0.86。据我们所知,这些是首次对人体体内代谢速率进行定量预测。此外,这是首次在任何物种中证明计算预测与体内和体外数据相符的例子之一。本文提出的模型为未来设计更安全的化学品,特别是氢氯氟烃和吸入麻醉剂,提供了一种方法原型。