Suppr超能文献

七氟烷的生物转化

Biotransformation of sevoflurane.

作者信息

Kharasch E D

机构信息

Department of Anesthesiology, University of Washington, Seattle 98195, USA.

出版信息

Anesth Analg. 1995 Dec;81(6 Suppl):S27-38. doi: 10.1097/00000539-199512001-00005.

Abstract

Several characteristics of sevoflurane biotransformation are apparent from the preceding investigations. Metabolism is rapid, with fluoride and HFIP appearing in plasma within minutes after the start of sevoflurane administration (38-40,51). Peak plasma fluoride concentrations generally occur within approximately 1 h after the termination of sevoflurane administration in most patients, regardless of the dose or duration of exposure (ranging from 0.35-9.5 MAC-h) (39,48). Peak plasma inorganic fluoride concentrations are proportional to sevoflurane dose, measured in MAC-h (42-44). Inorganic fluoride concentrations decline rapidly after termination of sevoflurane administration, with concentrations well below peak levels by the first postoperative day. HFIP is rapidly conjugated, with more than 85% circulating in plasma as the glucuronide. Plasma HFIP concentrations peak later than fluoride concentrations, but both metabolites are eliminated at similar rates (52). Metabolism of sevoflurane does not contribute to the termination of clinical drug effect (52), unlike more extensively metabolized drugs such as halothane (55). Sevoflurane is metabolized by P-450 2E1, so pathophysiologic factors and drug interactions altering P-450 2E1 activity will also influence sevoflurane metabolism (52). The extent of metabolism of sevoflurane, 2% to 5%, is less than that of all other volatile anesthetics except isoflurane and desflurane. It has been proposed that the ideal anesthetic should resist biotransformation because anesthetic toxicity is related to anesthetic metabolism (67,68). Experience to date suggests that biotransformation of sevoflurane has not been causally related to either hepatic or renal toxicity. Sevoflurane does not result in formation of fluoroacetylated liver neoantigens or other reactive metabolites. Although both sevoflurane and methoxyflurane may produce plasma fluoride concentrations in excess of 50 microM, they have not produced the same nephrotoxic effects. Clearly, anesthetic metabolism and anesthetic toxicity can no longer be considered synonymous. The introduction of sevoflurane into clinical practice will hopefully stimulate new investigations into biochemical mechanisms of anesthetic toxicity and continued clinical investigations regarding the relationship between anesthetic metabolism and organ toxicity.

摘要

七氟烷生物转化的几个特点在之前的研究中很明显。代谢迅速,在七氟烷给药开始后几分钟内,血浆中就会出现氟化物和六氟异丙醇(HFIP)(38 - 40,51)。在大多数患者中,无论剂量或暴露时间长短(范围为0.35 - 9.5 MAC - h),血浆氟化物浓度峰值通常在七氟烷给药结束后约1小时内出现(39,48)。血浆无机氟化物浓度峰值与以MAC - h衡量的七氟烷剂量成正比(42 - 44)。七氟烷给药结束后,无机氟化物浓度迅速下降,到术后第一天时浓度远低于峰值水平。HFIP迅速结合,超过85%以葡萄糖醛酸苷的形式在血浆中循环。血浆HFIP浓度峰值出现的时间比氟化物浓度峰值晚,但两种代谢产物的消除速率相似(52)。与氟烷等代谢更广泛的药物不同(55),七氟烷的代谢对临床药物效应的终止没有作用(52)。七氟烷由细胞色素P - 450 2E1代谢,因此改变细胞色素P - 450 2E1活性的病理生理因素和药物相互作用也会影响七氟烷的代谢(52)。七氟烷的代谢程度为2%至5%,除异氟烷和地氟烷外,低于所有其他挥发性麻醉剂。有人提出理想的麻醉剂应抵抗生物转化,因为麻醉剂毒性与麻醉剂代谢有关(67,68)。迄今为止的经验表明,七氟烷的生物转化与肝毒性或肾毒性均无因果关系。七氟烷不会导致氟乙酰化肝新抗原或其他活性代谢产物的形成。虽然七氟烷和甲氧氟烷都可能使血浆氟化物浓度超过50微摩尔/升,但它们并未产生相同的肾毒性作用。显然,麻醉剂代谢和麻醉剂毒性不能再被视为同义词。七氟烷引入临床实践有望激发对麻醉剂毒性生化机制的新研究以及关于麻醉剂代谢与器官毒性关系的持续临床研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验