Suppr超能文献

新型苯并恶嗪利福霉素KRM-1648抗分枝杆菌活性的作用机制

Mechanism of action of antimycobacterial activity of the new benzoxazinorifamycin KRM-1648.

作者信息

Fujii K, Saito H, Tomioka H, Mae T, Hosoe K

机构信息

Department of Microbiology and Immunology, Shimane Medical University, Japan.

出版信息

Antimicrob Agents Chemother. 1995 Jul;39(7):1489-92. doi: 10.1128/AAC.39.7.1489.

Abstract

The mechanism of antimicrobial activity of KRM-1648 (KRM), a new rifamycin derivative with potent antimycobacterial activity, was studied. Both KRM and rifampin (RMP) inhibited RNA polymerases from Escherichia coli and Mycobacterium avium at low concentrations: the 50% inhibitory concentrations (IC50s) of KRM and RMP for E. coli RNA polymerase were 0.13 and 0.10 micrograms/ml, respectively, while the IC50s for M. avium RNA polymerase were 0.20 and 0.07 microgram/ml. Both KRM and RMP exerted weak inhibitory activity against Mycobacterium fortuitum RNA polymerase, rabbit thymus RNA polymerases, E. coli DNA polymerase I, and two types of reverse transcriptases. Uptake of 14C-KRM by M. avium reached 18,000 dpm/mg (dry weight) 1.5 h after incubation, while uptake by E. coli cells was slight. KRM was much more effective in inhibiting uptake of 14C-uracil than was RMP (IC50 of KRM, 0.04 microgram/ml; IC50 of RMP, 0.12 microgram/ml). These findings suggest, first, that the potent antimycobacterial activity of KRM is due to inhibition of bacterial RNA polymerase and, second, that the activity of KRM against target organisms depends on target cell wall permeability.

摘要

对新型利福霉素衍生物KRM-1648(KRM)的抗菌活性机制进行了研究,该衍生物具有强大的抗分枝杆菌活性。KRM和利福平(RMP)在低浓度下均能抑制大肠杆菌和鸟分枝杆菌的RNA聚合酶:KRM和RMP对大肠杆菌RNA聚合酶的50%抑制浓度(IC50)分别为0.13和0.10微克/毫升,而对鸟分枝杆菌RNA聚合酶的IC50分别为0.20和0.07微克/毫升。KRM和RMP对偶然分枝杆菌RNA聚合酶、兔胸腺RNA聚合酶、大肠杆菌DNA聚合酶I以及两种逆转录酶均表现出较弱的抑制活性。鸟分枝杆菌在孵育1.5小时后对14C-KRM的摄取量达到18,000 dpm/毫克(干重),而大肠杆菌细胞的摄取量很少。KRM在抑制14C-尿嘧啶摄取方面比RMP有效得多(KRM的IC50为0.04微克/毫升;RMP的IC50为0.12微克/毫升)。这些发现表明,首先,KRM强大的抗分枝杆菌活性归因于对细菌RNA聚合酶的抑制,其次,KRM对靶生物体的活性取决于靶细胞壁的通透性。

相似文献

1
Mechanism of action of antimycobacterial activity of the new benzoxazinorifamycin KRM-1648.
Antimicrob Agents Chemother. 1995 Jul;39(7):1489-92. doi: 10.1128/AAC.39.7.1489.
2
In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 1995 Oct;39(10):2295-303. doi: 10.1128/AAC.39.10.2295.
5
In vitro antimycobacterial activities of newly synthesized benzoxazinorifamycins.
Antimicrob Agents Chemother. 1991 Mar;35(3):542-7. doi: 10.1128/AAC.35.3.542.

引用本文的文献

1
Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules.
EcoSal Plus. 2020 Apr;9(1). doi: 10.1128/ecosalplus.ESP-0017-2019.
2
Co-evolution of RNA polymerase with RbpA in the phylum Actinobacteria.
Appl Transl Genom. 2012 May 26;1:9-20. doi: 10.1016/j.atg.2012.03.001. eCollection 2012 Dec 1.
4
Efficacy of benzoxazinorifamycins in a mouse model of Chlamydia pneumoniae lung infection.
Antimicrob Agents Chemother. 2008 May;52(5):1855-8. doi: 10.1128/AAC.01567-07. Epub 2008 Mar 10.
5
Efficacy of novel rifamycin derivatives against rifamycin-sensitive and -resistant Staphylococcus aureus isolates in murine models of infection.
Antimicrob Agents Chemother. 2006 Nov;50(11):3658-64. doi: 10.1128/AAC.01087-05. Epub 2006 Aug 28.
6
Rifalazil pretreatment of mammalian cell cultures prevents subsequent Chlamydia infection.
Antimicrob Agents Chemother. 2006 Feb;50(2):439-44. doi: 10.1128/AAC.50.2.439-444.2006.
7
Rifalazil treats and prevents relapse of clostridium difficile-associated diarrhea in hamsters.
Antimicrob Agents Chemother. 2004 Oct;48(10):3975-9. doi: 10.1128/AAC.48.10.3975-3979.2004.
8
In vitro anti-Helicobacter pylori activities of new rifamycin derivatives, KRM-1648 and KRM-1657.
Antimicrob Agents Chemother. 1999 May;43(5):1072-6. doi: 10.1128/AAC.43.5.1072.
9
How effective is KRM-1648 in treatment of disseminated Mycobacterium avium complex infections in beige mice?
Antimicrob Agents Chemother. 1996 Feb;40(2):437-42. doi: 10.1128/AAC.40.2.437.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Synthesis and biological activity of 3'-hydroxy-5'-aminobenzoxazinorifamycin derivatives.
Chem Pharm Bull (Tokyo). 1993 Jan;41(1):148-55. doi: 10.1248/cpb.41.148.
5
In vitro and in vivo antibacterial activities of KRM-1648 and KRM-1657, new rifamycin derivatives.
Antimicrob Agents Chemother. 1994 May;38(5):1118-22. doi: 10.1128/AAC.38.5.1118.
8
Interaction of new anthracycline antibiotics with DNA. Effects on nucleic acid synthesis and binding to DNA.
Biochim Biophys Acta. 1983 May 20;740(1):80-7. doi: 10.1016/0167-4781(83)90124-0.
9
Physico-chemical studies on rifampicin.
Antibiot Chemother. 1970;16:380-91. doi: 10.1159/000386841.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验