Suppr超能文献

Physical (in) stability of liposomes upon chemical hydrolysis: the role of lysophospholipids and fatty acids.

作者信息

Zuidam N J, Gouw H K, Barenholz Y, Crommelin D J

机构信息

Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Pharmacy, Utrecht University, The Netherlands.

出版信息

Biochim Biophys Acta. 1995 Nov 22;1240(1):101-10. doi: 10.1016/0005-2736(95)00180-5.

Abstract

As a consequence of chemical hydrolysis of liposomal phospholipids the organization of the lipid assembly can change from a lamellar into a micellar system. Different approaches provided evidence for this conversion: 31P-NMR analysis, turbidity measurements and ultracentrifugation experiments. Two conditions have to be met before this conversion can take place: (1) the liposomes must pass through a gel-to-liquid crystalline phase-transition during a heating or cooling run, and (2) the degree of chemical hydrolysis must exceed a critical hydrolysis percentage (or the phospholipid bilayer must contain critical amounts of lysophospholipid and fatty acid). As monitored by turbidity measurements, this critical level of hydrolysis and the relative change depended on the chain length and on the head group of the liposomal phospholipids. It does not depend on concentration, pH, storage temperature or on size of the liposomes within the experimental range. Addition of cholesterol to bilayers composed of dipalmitoylphosphatidylcholine prevents the lamellar to micellar transformation. Fluorescence anisotropy measurements of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene in 0.18-microns dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol (10:1)-liposomes indicated that behavior of the probe below and above the phase-transition temperature was not affected by chemical hydrolysis, or even by formation of micelles. However, the phase-transition temperature range broadened and shifted towards higher temperatures upon hydrolysis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验